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I. INTRODUCTION 

In most electrical filter design, the major consideration 

is the frequency response characteristic. The design problem 

may be simplified to finding a physically realizable elec­

trical network which has a specified response over a given 

frequency range. With the increased use of active elements, 

even the requirement on physical realizability is being 

relaxed to a large extent and now filters are being designed 

which at one time would have been considered unrealizable 

(1, 2, 3). 

There is, however, another class of networks which are 

becoming more common and which do not share the relaxed 

physical realization criteria of the purely electrical 

filters. These are the nonelectrical networks which include 

mechanical or acoustic elements in either lumped or distrib­

uted form. These networks may represent a filter or a 

transducer, but they all contain frequency sensitive 

elements analogous to electrical inductance and capacitance. 

In general, these nonelectrical networks and some special 

electrical networks may include within their physical 

realizability conditions certain inter-component con­

straints (4). 

These inter-component constraints may require special 

treatment when the device is to be designed on the basis 

of its lumped parameter electrical network. Since the 
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synthesis techniques for lumped electrical networks are 

well developed, it is often desirable to express the 

synthesis of more general forms in terms of this analog. 

However, these synthesis techniques do not consider the 

inter-component constraints which may be present, so addi­

tional techniques may be required. 

One purpose of the thesis is to develop approximation 

techniques which will allow the standard methods of elec­

trical network synthesis to be applied to networks which 

contain inter-component constraints. This purpose may be 

expanded to include methods of approximation which will 

permit a wider variety of networks, all of which have similar 

frequency responses, to be synthesized. A second purpose for 

this type of approximation method is to permit a wider range 

of functions, irrational as well as rational, to be approxi­

mated in a form which makes them available as possible net­

work response characteristics. 

A. Practical Design Problem 

The development of approximation methods which would 

allow electrical network synthesis techniques to be applied 

to the design of nonelectrical networks with inter-

component constraints became necessary in the design of 

a miniature acoustic transducer. 

Because of the acoustic nature of the elements and the 

small size of the transducer, several inter-component 
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constraints had to be placed on the network elements. Also, 

since the device was being designed for a specialized 

application, rigid specifications were placed on the fre­

quency response characteristics. The final configuration 

of the acoustic device specified the topology of the 

electrical analog network. Existing methods of approxi­

mation failed to produce networks which satisfied all of 

the above conditions. Therefore, to satisfactorily complete 

the transducer design, a new method of approximation had to 

be developed. 

The design of the transducer discussed above and the 

particular constraints on this design are fully discussed 

in Section III of this thesis. 

B. Proposed Solution 

As a method of solving the problem of network synthesis 

with intsr-componGnt constraints, it v.'as proposed to form 2 

new method of approximating the desired response character­

istic , This new method is to produce a family of approxi­

mating functions all having similar response characteristics, 

but differing in actual numerical values. In this way, a 

family of networks could be formed, all with similar 

responses, but with different element values. Prom this 

family those networks satisfying the constraints could be 

chosen. 

Several fundamental decisions were made concerning the 
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form of the approximation technique. The approximating 

function is to be an even polynomial and the Method of 

Gewertz (5) will be included in the synthesis procedure. 

Based on the work of Chebyshev in (6), it was decided to use 

an equi-ripple approximation to the function being approxi­

mated. In order to obtain a free parameter which could be 

varied independently of the pass band frequency response 

to give a family of networks, one of the pass band ripples 

was sacrificed. Thus, the original proposed solution was 

to approximate the needed response characteristic with an 

approximately Chebyshev polynomial with one pass band ripple 

sacrificed to allow an independently variable parameter. 

This proposal was later expanded to permit more than one 

ripple to be sacrificed allowing more than one variable to 

be used. 

Tvîo approximation methods were developed based on this 

proposal. The first of these, the extremum method, is 

discussed in Section II. This method is limited in scope 

allowing only a multi-parameter approximation of zero over 

the frequency range from zero to one. This method proved 

successful in the acoustic transducer design problem. The 

second method, discussed in Sections IV, V, and VI, is the 

coefficient method which is a general method for approxi­

mating any single-valued, finite function over a given 

range. This more general method was developed from ideas 
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used in the work with the extremum method. 

C. Comparison with Existing Methods 

There are several approximation techniques which are 

now being used in network design problems. The best known 

of these are the methods of Chebyshev and Butterworth (3). 

Both of these methods approximate the function to within 

limits by a polynomial. However, once definite specifica­

tions are made, only one polynomial is available and no 

variation within the method is possible. 

Two other methods of interest are more recent than the 

first two discussed. The approximation method developed by 

N. B. Jones (7) makes use of the Chebyshev Polynomials and 

by frequency scaling techniques permits one ripple location 

to be specified. In this way a number of polynomials may 

be formed, all having approximately the same response as 

the original Chebyshev Polynomial. Using this method only 

small variations about the original may be achieved. The 

only parameter available is the ripple location. This 

method is also limited to approximations of a constant. 

The approximation method of major interest for compari­

son with the methods of this thesis is that of D. S. 

Humpherys (8). This method allows any polynomial to be 

approximated in an equi-ripple manner by a rational 

function, There exists the possibility of using one root 

location of the rational function as a variable parameter 
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by sacrificing one pass band ripple. The method does allow 

a closed form solution once a given set of conditions is 

met and requires only the solution of a set of linear 

equations. The major limitation on this method is the 

requirement that the function to be approximated be 

expressible as a polynomial. 

Each of the existing methods fails to meet all the 

requirements desired in the methods of this thesis. These 

methods are to permit an approximation of any function or 

curve to within limits of magnitude and over a range of 

frequency. Furthermore, the approximation is to be 

accomplished by a family of polynomials produced by 

variation of one or more arbitrary parameters. The param­

eters are to be extra conditions which may be imposed as a 

result of the sacrifice of an appropriate number of pass 

band ripples. 

A recent article by Ishizaki and Watanabe (9) describes 

a technique for optimizing a network in order to approxi­

mate a Chebyshev type response. Examination of the system 

of equations used in this technique leads to the conclusion 

that the approximation methods described in this thesis may 

be adaptable for use in network optimization as well as for 

the function approximation purpose originally outlined. 
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II. THE EXTREMUM METHOD 

This section and the one following describe the extremum 

method of approximating a constant and Illustrate its 

application to the design of an acoustic transducer. The 

concepts underlying the extremum method and its development 

are discussed in this section. Section III includes details 

of the acoustic transducer design problem and its solution 

using the extremum method. 

In order to simplify the notation to be used, the term 

"extremum" will be used to signify that value of x at which 

the polynomial, P(x) has a local minimum or maximum. The 
p 

polynomial, P(x) = x + 1, is a minimum at x = 0 and thus 

zero is an extremum of this polynomial. The value of P(x) 

at the extremum will be referred to as the value at the 

extremum. In the example polynomial the value at the 

extremum is one. 

A. Fundamental Concepts 

The fundamental concepts underlying the extremum method 

are similar to those upon which the Chebyshev Polynomials 

are based. These polynomials are commonly used to approxi­

mate a constant in an equi-ripple manner over a finite 

range of the Independent variable. Figure 1 shows a 

typical zero pattern of a Chebyshev Polynomial and its 

behavior along the real axis of the x-plane. These polyno-
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mlals have either even or odd symmetry about the vertical 

axis. 

In order to simplify the equations and the computer 

programming a change in the independent variable has been 

made. As used in network synthesis the polynomials would be 

a function of complex frequency, s, and their zeros would 

lie on the imaginary axis of the s-plane. Throughout this 

thesis the new variable, x = -js, is used to force the zeros 

of P(x) to lie on the real axis. 

1. Basic Chebyshev specifications 

The example Chebyshev Polynomial, characteristics of 

which are plotted in Figure 1, is an eighth order polynomial 

of the form given in Equation 1. In this form, there are 

five unknowns, the five a^ coefficients, which must be 

determined by specifying five conditions on the polynomial. 

agx^ + agx^ + a^x^ + a^x^ + ag = P(x) (1) 

In the case of the Chebyshev Polynomials, the five conditions 

are the two end conditions, P(0) =1 and P(l) = 1, and 

three extrema. The conditions at the extrema are deter­

mined by the equl-ripple requirement and may be specified 

by requiring that the values at the extrema be Ï 1. The 

end point condition at zero may be considered a special 

case of the extrema conditions for even polynomials. 

These end point and extrema conditions, when applied to 
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a general even polynomial of the form given in Equation 2 

result in an equi-ripple approximation to zero over the 

P(x) = E ap.x^^ (2) 
i=0 

range from x = 0 to x = 1. This approximating polynomial 

will have n zeros lying on the real x-axis between zero 

and one and n extrema including zero in this same range. 

This general even polynomial will have n + 1 unknown 

coefficients. These unknown coefficients can be determined 

by specifying conditions on the n extrema and the end point 

at X = 1. These conditions determine the Chebyshev 

Polynomial of order 2n. 

2. Effect of relaxing condition at zero 

A set of modified polynomials may be formed from the 

Chebyshev Polynomials by allowing the condition at zero to 

be other than P(0) = 1. Figure 2 illustrates the effects 

of allowing P(0) to be less than one but greater than zero, 

to be zero, and to be less than zero. In each case the 

polynomial zeros are shifted from the zeros of the original 

Chebyshev Polynomial represented by the dotted circles. As 

P(0) decreases toward zero, the real axis zeros are forced 

onto the imaginary axis. As P(0) becomes more negative a 

pair of extrema also become imaginary and both the real 

axis extrema and zeros between x = 0 and x = 1 are reduced 

in number by one. 



www.manaraa.com

11 

POO 

A. P<0) LESS THAN L BUT GREATER THAN ZERO 

P(X) 

B. P(0)>0, DOUBLE ZERO AT ORIGIN 

P(X) 

TWO ZEROS ON IMAGINARY AXIS C. P(0) LESS THAN -I 

FIGURE 2. REAL AXIS BEHAVIOR AND ZEROS OF MODIFIED EIGHTH 

ORDER POLYNOMIALS 

ORIGINAL ZEROS SHOWN AS DOTTED OIRGLES 
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3. Imaginary axis extrema 

A logical extension of the results of decreasing the 

value of P(0) is to allow this value to become equal to -1. 

In this case, as shown in Figure 3a, the behavior of this 

modified polynomial resembles that of the Chebyshev 

Polynomial of order 2(n - l) even though the actual poly­

nomial is of order 2n. The polynomial is still an equi-

ripple approximation to zero but with one fewer pass band 

ripples than the original Chebyshev approximation. Also, 

the slope of the curve as it passes through the end point 

has been reduced due to the shift toward the origin of the 

zero closest to one, the slope of the curve as it passes 

through the end point has been reduced. 

Because the real axis behavior of this modified equi-

ripple approximating polynomial is similar to that of the 

next even order Chebyshev Polynomial of lower order, one 

fewer condition must be specified to preserve this 

character. Since n + 1 conditions are still needed to 

specify the n + 1 coefficients of the polynomials and only 

n are needed to specify the equl-ripple approximation to 

zero specification, there is one condition which may be 

specified arbitrarily. This extra condition allows the 

introduction of an arbitrary parameter which may be 

selected independently of the desired frequency response 

requirements and permits a family of networks, all having 
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A. ONE PAIR OF COMPLEX ZEROS, EXTREMUM X, ARBITRARY 

PW) 

D. TWO PAIRS OF COMPLEX ZEROS, EXTREMA X,,X^ ARBITRARY 

FIGURE S. REAL AXIS BEHAVIOR OF MODIFIED EIGHTH ORDER 

POLYNOMIALS WITH EQUI-RIPPLE CHARACTERISTICS 
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the same frequency response character, to be formed. 

This analysis may be extended to Include more than one 

arbitrary parameter If more than one pass band ripple Is 

sacrificed. This possibility is illustrated in Figure 3b 

in which the pass band behavior of the polynomial having 

two pass band ripples sacrificed is shown. As In Figure 

3a, this represents an eighth order polynomial designed to 

be an equi-ripple approximation to zero. Since there are 

now four zeros located symmetrically with respect to the 

origin within the x-plane, no general statement may be made 

concerning the direction of shift of the remaining real axis 

zeros and the change of slope at x = 1. 

The extremum method is based on the analysis above. 

The conditions imposed upon the polynomials to be 

developed by this method are essentially those described 

for the Chebyshev Polynomials with the exception that one 

or more extrema are forced off the real axis. These 

complex extrema are used as the arbitrary parameters in 

the formation of a family of polynomials. 

The development of the extremum method was based on 

the fact that the polynomials developed by this method 

must be even order and be equi-ripple approximations to a 

constant. One or more extrema pairs of these polynomials 
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must be complex and their location within the x-plane 

may be arbitrary. 

1. Even polynomials 

The polynomials being considered throughout this thesis 

are even polynomials of the form given in Equation 2. In 

this equation, x is related to the complex frequency, s, 

commonly used in network synthesis by the relationship, 

X = - js. The polynomial was chosen to be even since the 

synthesis procedure uses the Method of Gev/ertz as mentioned 

in the Introduction. 

2. Extrema locations 

An additional hypothesis concerns the location of the 

extrema of the polynomials. In order to ensure that there 

will be no significant frequency components passed by the 

network outside the specific pass band, there must be no 

real axis extrema of P(x) outside the specified range of 

approximation. Extrema may exist off the real axis 

anywhere within the complex x-plane. 

3. Network conditions 

Several conditions are, of course, specified by the 

network itself, both in terms of its physical reallzablllty 

and of its inter-component constraints. The reallzablllty 
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constraint is, for most practical purposes, relieved by 

the synthesis procedure to be used and thus is not 

included as a factor in the approximation technique. 

One purpose behind the desire for a family of poly­

nomials is the ability to choose one particular poly­

nomial from the family on the basis of satisfying the 

constraints. In this way the constraints may be satisfied 

without specifically including them in the approximation 

procedure. For this reason, none of the many possible 

constraints are considered in the development of the 

approximation techniques although, as will be pointed out 

In a later section, some constraints can be considered 

when the arbitrary parameters are defined. 

C. Description of the Extremum Method 

The purpose of the extremum method of approximation 

is to develop a mult1-parameter family of polynomials 

which approximate a constant over a given range of x. 

These polynomials are essentially variations of the 

usual Chebyshev polynomials with the x-plane root 

locations changed as shown in Figure 3. The notation 

of Figure 3 will be used throughout this thesis. 

1. Extrema 

Since the extremum method is primarily designed for 

equi-ripple approximations, the maxima of P(x) will 
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have the value +1 and the minima the value (-1). For 

an m-parameter family Xj through x^ are the arbitrary 

extrema and x^^^ through x^_^ the extrema along the real 

axis. These extrema define Equation 3. 

P(Xi) = P' (X}) = 0 

f(%m) = "Sn P'(Xm) = 0 

= - 1 ° ® 

P(%n_l) = P'(Xn.l) = 0 

2. End conditions 

In addition to the extrema conditions described above, 

two end conditions are required before all unknown 

coefficients are completely specified. These end condi­

tions are P(0) = ± 1 and P(l) = ± 1. Usually the sign of 

the end condition for x = 1 is specified and the sign of 

P(0) is determined by the number of ripples in the pass 

band. Figure 4 illustrates the interrelationship between 

the number of pass band ripples and the end point signs. 

Since the number of pass band ripples for a Chebyshev 
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PU) 

-I 

A. EVEN NUMBER OP RIPPLES, PlO)"-l, P(l)>l 

B. ODD NUMBER OP RIPPLES, P(9)• I, P(l)*1 

FtSURS 4. ILLUSTRATION OF RELATIONSHIP BETWEEN END POINT 

CONDITIONS AND NUMBER OF RIPPLES 
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Polynomial of order 2n is n and the number of arbitrary 

parameters is m, the end point signs are related in a 

manner depending upon whether n-m is even or odd. In 

Figure 4a, the number of pass band ripples, n-m, is even 

and the end points have opposite signs. If the number of 

pass band ripples is odd, as in Figure 4b, the end points 

have the same sign. Therefore, if one end condition is 

specified, the other is determined by Equation 4. 

P(0) = (_i)n-m-lp(i) (4) 

3. Normalization 

The preceding discussion has dealt with polynomials 

which are approximations to zero with a unit ripple 

magnitude over the range of x from zero to one. Because 

of scaling techniques, no generality is lost by this 

normalization. The range of x over whicn the approxima­

tion is valid may be extended by frequency scaling. 

For network synthesis, the polynomials will normally 

be used in the form given in Equation 5. In this form the 

D(x) = 1 f rP(x) (5) 

ripple magnitude may be controlled by varying the ripple 

factor, r, and the constant being approximated can be 

controlled by magnitude scaling. 
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D. Development of the Extremum Method 

Several methods were used In attempts to develop an 

explicit form for the approximation technique. Two 

unsuccessful attempts are outlined in Appendices A and B. 

Both of these methods were abandoned when it was found 

that computational difficulties forced a series of 

assumptions. These assumptions restricted the form of the 

final solution to such an extent that no practical poly­

nomial families could be formed. It may be possible that 

additional Investigation along the lines of the methods out­

lined in the Appendices might result in some workable 

solutions. 

The method which proved practical in terms of producing 

usable polynomials is a numerical method involving the 

solution of a system of nonlinear equations. The basic 

steps of the method include the steps outlined here and 

discussed in detail in the following sections. 

1. Formation of extrema estimates 

2. Formation of derivative polynomial, P'(x) 

3. Integration of derivative polynomial P'(x) to 
obtain P{x) 

4. Evaluation of a constant of integration, L 

5. Evaluation of multiplicative constant, k 

6. Evaluation of P(x) at estimated extrema 

7. Determination of extrema error 

8. Improvement of extrema estimates 
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1. Extrema estimates 

The Input to each cycle of computations Is a set of 

extrema estimates. The input matrix X Is defined by Equation 

6. This is the form for an m-parameter family of poly­

nomials . The first m extrema pairs are used as the arbitrary 

parameters and are constants through the computational cycles 

for the particular polynomial being formed. 

Initially, in the iterative process, these estimates 

must be supplied externally. Once into the iterative 

process, the estimates are supplied for each cycle by the 

previous cycle until the estimates are refined sufficiently 

to be considered a solution, 

2. Formation of the derivative 

The derivative polynomial, P'(x), is formed using 

Equation 7= In this equation all m arbitrary parameter 

pairs have been defined along the imaginary axis. If an 

*m+l 

[X] = *m+2 (6 )  

(x^ + x^)(x^ + x^^J 

(7) 
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off-axis extrema combination is preferred, the term 

ho 2 P 
(x + ax + b) is substituted for two of the (x + x^) 

terms. The constants a and b define the complex extrema. 

The factor x is a result of the even x nature of the final 

polynomial, k is a constant to be defined later. 

Equation 7 is then multiplied out to obtain the poly­

nomial form of Equation 8. In this equation and the sub­

sequent ones, the coefficients, C^, are nonlinear functions 

of the arbitrary real extrema, x^ through x^, and the 

P'(x) = k(C^x^"~^ + Cyi x) (8) 

extrema estimates, x^^^ through x^_2. 

3. Integration 

To obtain P(x), Equation 8 is integrated. The form of 

P(x) which is the result of this operation is shown in 

Equation 9. In this equation, k is a multiplicative 

P(x) = k 
'1 2n ^ Cg 2n-2 , , 2 

— X + » X + . . . 4- -n- X 

. n-1 n-3 
+ L 

(9) 

constant which is used to satisfy the requirements for 

P(l), L is a constant of integration which is used to 

satisfy the requirements for P(0), 
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4. Constant of Integration 

In this case the constant of Integration, L, can be 

evaluated by Inspection of Equation 9 and found to be 

equal to P(0). For the general case. Equation 4 can be 

used to calculate this value for any problem. 

5. Multiplicative constant 

It is necessary to include a multiplicative constant, k, 

in the expression for P(x). Since k is not dependent upon 

either the extrema estimates or the arbitrary extrema, it 

nay be chosen to satisfy some other polynomial property. 

For purposes of this development, the value of k is 

chosen to satisfy the end condition given in Equation 4. 

For approximations with an even number of pass band ripples 

(i.e., P{0) = -P(l)) the value of k can be found using 

Equation 10. The sign is chosen to be the same as that 

k . + ... (10) 

^n-1 ^n-3 

of P(l). For approximations with an odd number of pass 

band ripples (i.e., P(0) = P(l)), any value of k will 

satisfy the end condition. Therefore the value of k 

determined by using Equation 10 can be used for both 

cases. 
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6. Polynomial evaluation 

The polynomial, in its final form given in Equation 9, 

is evaluated at the estimated extrema producing a test 

matrix Y defined in Equation 11. This vector is used to 

determine whether the polynomial produced is a solution or 

whether another computational cycle must be begun. 

7. Test for error 

From the discussion in Section II, C, 1, it is apparent 

that once the approximating polynomial has been formed, Y 

should consist only of ones with alternating signs. This 

ideal matrix, Y^, is compared to the actual Y matrix to 

obtain a measure of the error in the iterative process 

producing the approximating polynomial. One possible 

measure of the error is given in Equation 12. This 

particular method of defining the error is a measure of 

the variations of the extrema magnitudes from the limits. 

P(Xm+l) 

[Ï) (11) 

n—1 
Error « Z [P(x,) - sgn (P(xi))] 

i=m-5-l 

2 
(12) 
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Once the error measure is less than some specified maximum, 

the polynomial is defined as a solution. 

8. Estimate Improvement 

If the error measure, as computed by Equation 12, is 

above the maximum allowable error, the estimates of the 

extrema locations must be Improved and the cycle repeated. 

The output matrix Y, as well as the original input, X, 

are used in the improvement process. 

An improved set of estimates is obtained by solving 

Equation 13 for the values of x which do satisfy the 

extrema conditions. 

[Y] - [Y^] = 0 (13) 

Since the coefficients of are nonlinear functions 

of x^ through x^_2, Equation 13 is a set of (n-m-l) non­

linear equations In the unknown extrema. 

There are several methods of solving systems of non­

linear equations which may be used to produce an Improved 

set of estimates (6, 10). Among the better known are the 

methods of Newton-Raphson, Wegstein, and Muller (10). In 

practice it was found that this part of the computation 

cycle gave the most trouble since most commonly used 

methods of solving nonlinear systems require accurate 

initial estimates for convergence. 
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E. Practical Considerations 

As mentioned above, one of the major difficulties is 

the tendency of the methods of improving the extrema 

estimates to diverge unless an accurate set of initial 

estimates is supplied. In many cases, such initial esti­

mates rnay be obtained using Chebyshev polynomials. 

The initial estimates for a polynomial of order 2n 

having m arbitrary parameters may be obtained by using as 

estimates the extrema of the Chebyshev Polynomial of order 

(2n=2m). If the values of the m arbitrary parameters are 

sufficiently large, the extrema of the lower order 

Chebyshev polynomial are close enough to the approximation 

polynomial extrema to ensure convergence to a solution. 

Once the extrema of a first polynomial are known, they may 

be used as the Initial extrema estimates for a new poly­

nomial having slightly different arbitrary parameters. 

An example of the results of this procedure is illus­

trated by the curves of Figure 5- The polynomials being 

developed were I2th order polynomials with one arbitrary 

parameter. This figure shows a family of curves 

representing the changes in the four real extrema as the 

magnitude of the imaginary axis extrema is varied. The 

initial magnitude of the parameter x^ was set to ten and 

the extrema of the tenth order Chebyshev polynomial were 

used as the initial estimates. The procedure converged to 
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FIGURE S. VARIATION OF NON-ZERO EXTREMA FOR TWELFTH ORDER 
POLYNOMIALS WITH ONE ARBITRARY PARAMETER 
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a solution. The parameter was then reduced to five and the 

extrema of the previous polynomial were used as the initial 

estimates. Again, the procedure converged to the solution. 

This procedure was repeated until reached zero. As can 

be seen from Figure 5# very small changes in extrema are 

occurring for x^ > 1 permitting rather large steps in x^ to 

be made. Once x^ becomes less than one, large changes in 

the extrema locations occur and the step size must be 

reduced to permit convergence to a solution within a 

reasonable number of iterations. 

Using this method of determining extrema estimates, a 

family of polynomials can be produced faster than one 

particular polynomial can be if no accurate estimates are 

available. In addition, since the curves of extrema 

variation with arbitrary parameter are smoothly varying, 

polynomial regression techniques may be used to form a 

polynomial representation of each extrema as functions of 

the arbitrary parameter. Using these polynomials, the 

extrema for any value of the arbitrary parameter may be 

calculated. 

F, Comparison with Other Methods 

Before the extremum method was developed, several other 

methods were used in attempts to synthesize networks with 

inter-component constraints. The first attempts used 

Chebyshev and Butterworth polynomials. These methods 
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produced physically realizable electric networks of the 

proper form, but which did not meet the component constraints 

imposed. Elliptic functions (1, 2, 6) were also tried, but 

required changes in the topology of the network. None of 

the methods produced a family of polynomials formed through 

use of an arbitrary parameter. 

The method of approximating a constant developed by 

N. B. Jones (7) as outlined in Section 1.0 is similar to 

the extrema method in some respects. His method consists 

of translating the Chebyshev polynomials along the axis-

thus permitting the frequency at which one extremum my 

occur to be specified. By this translation it is possible 

that one or more pass band ripples may be shifted into the 

negative frequency region. Jones' method, though simpler, 

is not as versatile and does not permit as wide a range 

and choice of parameters as the extremum method. 

G. General Remarks 

Use of the extremum method as described in this section 

permits the development of a multiple-parameter family of 

polynomials which are equi-ripple approximations to a 

constant over the range from zero to one. Because it 

uses the extrema of the polynomials as the unknowns, the 

method requires the solution of only (n-m-l) nonlinear 

equations and (m+2) linear equations in the development of 

an even polynomial of order 2n. The linear equations 
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represent the two end points and the m arbitrary parameters. 

The nonlinear equations represent the pass band extrema. 

The extrema were chosen as the unknowns In the system 

In an attempt to reduce the number of nonlinear equations 

and thereby reduce the difficulties in computation. How­

ever, this choice of unknowns produced equations which were 

highly nonlinear. This high degree of nonllnearity increased 

the difficulties in the computation, especially in terms of 

the tendency of the method to diverge. 

As is Illustrated in Section III, the extremum method 

does work well in practice and can produce practical net­

work designs in cases where the traditional methods failed 

to do so. 
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III, APPLICATION TO TRANSDUCER DESIGN 

The extremum method of approximating a constant by a 

multi-parameter family of polynomials was developed in 

reponse to an actual industrial problem, the design of an 

electro-acoustic transducer. This section outlines that 

practical application of this type of approximation technique. 

Because of the nature of the miniature acoustic device 

being designed, specifications other than frequency response 

had to be satisfied. For this reason, standard approximation 

methods which are based on frequency response criteria only 

were not appropriate and the extremum method, producing a 

family of polynomials with similar frequency response char­

acteristics, was developed. This family of polynomials 

yields a family of networks with the desired frequency 

response, from which the member best satisfying all of the 

specifications can be chosen. 

The additional requirements, other than the frequency 

response requirements, were dictated by the small size 

and the nonelectrical nature of the final device. Several 

important inter-component constraints were specified by 

the types of acoustic elements which comprise the final 

device. Because of the small size of the transducer, 

approximately 1/8 inch by 1/8 Inch by 1/4 inch, other 

constraints were Imposed upon the final acoustic network, 

primarily to make the device practically producible by 
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mass production techniques. The basic acoustic configura­

tion specified the topology of the electrical analog used 

in the synthesis process. 

A. Transducer Requirements 

The requirements on the transducer design may be divided 

into three categories. These are frequency response, analog 

electrical network topology, and inter-component constraints. 

1. Frequency response 

The fundamental requirement on the frequency response 

of the transducer was that, when operating into the human 

ear, the overall response be an equi-ripple approximation 

to a constant. The peak to valley magnitude of this ripple 

was to be three decibels. 

The overall system consists of two parts as shown in 

the block diagram of Figure 6a, the transducer itself and 

the human ear. In this block diagram, voltages are used 

as the analogs of the various input and output signals. 

The overall transfer function, E^/Ej, has been specified 

to be an equi-ripple approximation to a constant. Since 

that part of the human ear* affecting the frequency 

response can be approximated as Eg/Eg = s, the magnitude 

of the required transducer transfer function, Eg/E^, 

must be an equi-ripple approximation to l/s. 
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2. Network topology 

Since the final device is an acoustic network, the 

topology of the electrical analog network is fixed by the 

physical configuration of the device. The electrical analog 

which was developed from the acoustic configuration is shown 

in Figure 6b. This network was specified independently of 

the frequency response and was based solely on the physical 

configuration of the device. 

The load resistor indicated in the diagram includes 

losses within the acoustic components and the loading effects 

of the ear. The differentiating effect of the ear is not 

included within this network. Thus, the network represents 

only the transducer and its resistive load. 

3. Inter-component constraints 

Several constraints on the component values relative to 

those of other components wer-e imposed on the electrical 

analog by the nature of the acoustic elements and the 

fabrication process. These inter-component constraints 

are : 

1. When scaled to make the load resistor one ohm, 

the capacitor, Cg, must be larger in numerical 

value than the Inductor, L-j_. 

2. When scaled to make the load resistor one ohm, 

the capacitor, C^, must be larger in numerical 

value than the Inductor, Lg. 
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3. The value of the input capacitor, must be 

equal to or larger than that for C^. 

4. The sum of the capacitances should be as small as 

possible. Since capacitance is a measure of 

volume, this ensures a small transducer volume. 

The first two of these constraints are absolute require­

ments due to the nature of miniature acoustic elements (4). 

The latter two constraints are not absolute requirements, 

but are desirable in terms of ease of fabrication and 

miniaturization. 

B. Design Procedure 

The design consisted of developing a network which met 

all the requirements listed above. The first step in this 

design involved developing a family of polynomials which 

approximate the appropriate function giving the desired 

flat response. The seconu part of the procedure involved 

the use of the Method of Gewertz to produce network 

functions which could be reduced to electrical networks 

by standard synthesis techniques. 

Since the Method of Gewertz was to be used, the 

function to be formed was the real part of the squared 

input admittance. The denominator of this function was 

of the form l+rP(x), where the P(x) polynomial was a 

twelfeth order approximation to zero as discussed in 

Section II. To obtain the desired integrating effect, 
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numerator of the function was a frequency squared term. 

The ripple factor, r, had the value of 0.33 to produce the 

desired ripple magnitude. The formation of P(x) is not 

affected by the choice of the ripple factor. 

The extremum method was used to form a one parameter 

family of polynomials which approximate zero over the range 

of X from zero to one. These polynomials and the desired 

ripple factor were used as Inputs to a computer program 

which created the appropriate numerator, applied the Method 

of Gewertz and synthesized the electrical network. The 

resulting network family was analyzed and examined to 

determine those networks which satisfied all specifications. 

C. Design Results 

1. Results using other methods 

Before the extremum method was developed for this 

problem, attempts were made to design the transnuçer using 

existing methods. The methods tried were those using 

Chebyshev and Butterworth Polynomials and later the more 

recent methods developed by N. B. Jones (7) and Deverl 

Humpherys (8). These methods failed to produce networks 

which met all specifications. 

The network component values obtained using the 

twelfth order Chebyshev Polynomial are listed In Table 1. 

Prom this table it can be seen that, although the network 

Is physically realizable as an electrical network, it is 
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Table 1. Chebyshev network components 

= 1.086 f Cg = 1.344 f C3 = 1.259 f 

L3 = 1.756 h = 2.634 h Lg = 2.661 h 

not realizable as an acoustic network with the Inter-

component constraints described previously. Although this 

network is not a realizable transducer. It will be used as 

a basis for comparison for the networks developed using the 

extremum method. 

2. Results using the extremum method 

The design procedures outlined previously were applied 

to polynomials formed using the extremum method. The 

approximating polynomials were of the form given in 

Equation l4. The coefficients for the one parameter family 

are given in Table 2. 

a^x^^ + + a^x^ + a^x^ + a^x^ + a^x^ +1 = P(x) 

This polynomial family was formed using the extremum 

of the polynomial located on the Imaginary axis of the 

x-plane (the real axis of the s-plane) as the arbitrary 

parameter. As described in Section 11.D, a large value 

for x^, the arbitrary parameter, was used to form the 

(14) 
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^1 

5 .0 16.73305 
4 .5 20.56558 
4 .0 25.86320 
3 .5 33.47606 
3 .0 44.95219 
2 .5 63.29808 
2 .0 95.10191 
1 .5 156.4341 
1 .0 292.5809 
0 .9 338.1299 
0 .8 393.6276 
0 .7 461.6256 
0 .6 545.3663 
0.5 648.8170 
0 .4 776.1910 
0 .3 931.1291 
0 .2 1109.258 
0 .1 1276.406 
0 .0 1350.934 

461.7498 
450.2625 
434.3053 
411.,4271 
377.0098 
321.,6480 
225.5953 
39.76873 

- 376.1719 
- 516.3444 
- 687.7921 
- 898.8974 
-1160 ,.410 
-1485.778 
-1890.157 
-2387.200 
-2965.550 
-3514.960 
-3761.862 

extremum method 

a-

-1224.451 
-1211.770 
-1194.074 
-1168.750 
-1130.721 
-1069.163 
- 962.2121 
- 745.4078 
- 284.3729 
- 124.4807 

72.07461 
315.6502 
619.7198 

1001.601 
1482.029 
2080.825 
2788.842 
3472.401 
3782.791 

1092.712 
1086.486 
1077.764 
1065.296 
1049.595 
1016.137 
963.0937 
859.4108 
621.6228 
539.7075 
438.3096 
311.5542 
151.6269 

- 51.86849 
- 312.1969 
- 643.1107 
-1043.324 
-1438.516 
-1620.567 

-394.4147 
-393.1399 
-391.3480 
-388.7864 
-384.9456 
-378.6533 
-367.6500 
-345.9530 
-295.2146 
-277.4150 
-255.1554 
-226.9699 
-190.8386 
-143.9449 
- 82.42875 

1.826661 
99.09057 

202.1804 
250.7054 

49.67062 
49.59531 
49.48923 
49.33725 
49.10919 
48.73322 
48.07110 
46.74738 
43.55585 
42.40274 
40.93575 
39.03735 
36.53588 
33.17370 
28.56307 
22.18256 
13.68778 
4.489230 
0.000000 
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initial polynomial and the extrema of this polynomial were 

used as estimates for the succeeding polynomial. In Table 2 

it requires approximately the same number of iterations to 

go from any polynomial to the one immediately following 

when the extrema of the former are used as the initial 

estimates for the latter. 

The family of electrical networks corresponding to the 

polynomial family of Table 2 was synthesized using the 

ripple factor corresponding to a ripple factor of 0.33. 

The component values for this network family are given in 

Table 3. Since all members of this network family meet 

all transducer requirements, any member may be used in the 

final design. Therefore the final selection may be based 

on considerations other than those listed in this discussion. 

Typical of the characteristics which were considered in the 

final selection are cut-off characteristics, sensitivity to 

input signals and stability. In the event that this one 

parameter family had failed to produce satisfactory net­

works, it had been planned to sacrifice a second pass band 

ripple and form a two parameter family of networks. 

The networks were examined for their frequency responses 

using computer generated frequency response plots. Figure 

7 shows typical frequency response curves obtained for the 

complete system including these networks and the ear 

effects. The response curve for the Chebyshev network 
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Table 3. Network family 

^1 Cl % ^2 L2 G3 L3 

0.0 2.073 1.446 2.273 1.709 1.709 1.306 
0.1 2.093 1.418 2.337 1.651 1.760 1.253 
0.2 2.126 1.372 2.454 1.544 1.865 1.142 
0.3 2.147 1.342 2.543 1.461 1.961 1.029 
0.4 2.156 1.325 2.594 1.406 2.030 0.9310 
0.5 2.160 1.317 2.621 1.370 2.076 0.8492 
0.6 2.161 1.312 2.635 1.346 2.105 0.7800 
0.7 2.160 1.310 2.643 1.329 2.121 0.7208 
0.8 2.160 1.308 2.645 1.317 2.128 0.6697 
0 .9  2.159 1.307 2.646 1.308 2.136 0.6252 
1.0 2.158 1.306 2.645 1.301 2.127 0.5862 
1.5 2.156 1.304 2.640 1.280 2.090 0.4455 
2.0 2.154 1.302 2.636 1.270 2.045 0.3590 
2.5 2.153 1.302 2.633 1.264 2.008 0.3004 
3.0 2.153 1.301 2.631 1.261 1.977 0.2581 

3,5 2.153 1.301 2.630 1.258 1.952 0.2262 
4.0 2.153 1.301 2.630 1.256 1.931 0.2014 
4.5 2.152 1.301 2.628 1.255 1.915 0.1814 
5.0 2.152 1.301 2.628 1.254 1.900 0.1650 

design is included for comparison purposes. 

3. Additional test results 

Several additional tests were performed on the networks 

formed using the extremum method to aid in their evalua­

tion. These tests included sensitivity to polynomial 

coefficient precision and effects of varying the ripple 

factor on the component values. 

A series of tests were made on the networks to determine 

the effects of reduced polynomial coefficient precision. 
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In this series of tests the number of significant figures 

In the polynomial coefficients was reduced until there 

was a significant change in the frequency response curves 

of the resulting networks. The computer generated response 

curves were used as the basis for comparison. No notice­

able change (less than 1%) was noticed until the number of 

significant figures was reduced to three. For this value 

the response curves differed noticeably (greater than 50) 

from the more precise curves. Therefore, it was decided 

that four significant figures were satisfactory and this 

precision was used throughout the remainder of the synthesis 

and analysis. 

A series of tests was performed to determine whether or 

not the ripple magnitude could be reduced without violating 

one or more of the inter-component constraints. Table 4 

gives the results of one of these tests. For this test 

the arbitrary parameter was held at 0.5 and the ripple 

factor varied from 0.5 to 0.0001. The results of this 

test show that the ripple factor could be reduced to 0.01 

before the Cg-L^ constraint was violated. Tests using 

other values for the arbitrary parameter showed similar 

results although the value for r at which the constraint 

was violated did vary with x^. 
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Table 4. Network variations with ripple factor 

Lj Cg Lg L 
3 

0.5 2.657 1.086 3.209 1.171 2.425 0.9690 
0.1 1.650 1.633 1.997 1.589 1.573 0.6311 
0.05 1.542 1.680 1.851 1.586 1.399 0.5496 
0.01 1.401 1.640 1.640 1.454 1.113 0.4196 
0.005 1.354 1.595 1.566 1.379 1.020 0.3793 
0.001 1.247 1.469 1.405 1.205 0.8464 O.3070 
0.0005 1.200 1.410 1.337 1.135 0.7849 0.2824 
0.0001 1.091 1.273 1.188 0.9562 0.6643 0.2356 

D. Conclusions 

In this particular problem the extremum method permitted 

the formation of a family of transducer analog networks, 

all members of which satisfied a variety of specifications 

imposed on the networks by the nature of the acoustic 

device and the fabricacion process. The application of 

existing approximation techniques resulted in networks 

which failed to satisfy these same specifications. The 

cost of obtaining this one parameter family of networks was 

the sacrifice of one pass band ripple and the resulting 

deterioration in the cut-off characteristics. 
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IV. THE COEFFICIENT METHOD 

In this section and the two which follow the coefficient 

method of forming approximating polynomials is discussed 

and Illustrated. The concepts underlying this method and 

details of the development of the method based on these 

concepts are covered in this section. In Section V several 

examples of polynomials developed using the coefficient 

method are shown in order to Illustrate the versatility of 

this method. Examples of the application of the coefficient 

method to problems of network synthesis are included in 

Section VI. 

The major purpose of the coefficient method Is to permit 

a wide variety of functions, irrational as well as rational, 

to be approximated by polynomials in a form suitable for use 

In network synthesis. This approximation is to be within 

specified magnitude limits and oyer a given range of the 

independent variable. In addition, it is desired to allow 

arbitrary parameters to be specified within the method so 

that multi-parameter families of approximating polynomials 

can be formed. An additional purpose is to develop a 

method which accomplishes the above but does not require the 

solution of a system of nonlinear equations. 

A. Characteristics of the Coefficient Method 

In the above statement which describes the purpose of 

the coefficient method, four desirable characteristics 
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are given. These characteristics are: 

1. approximation to a wide variety of functions, 

2. specified magnitude limits on the approximation, 

3. allowable arbitrary parameters, 

4. simplified methods of computation. 

These characteristics are described in detail in the following 

discussions. 

1. Functions to be approximated 

The major purpose of the coefficient method is to permit 

a wide variety of functions to be approximated by a poly­

nomial in a form suitable for use in network synthesis. 

For practical purposes the functions of Interest must be 

limited to those which are finite and single-valued over 

the range of approximation. These functions may be rational 

or Irrational, explicit mathematical forms or piece-wise 

linear approximations to functions which cannot be specified 

explicitly. 

This approximation is described in Figure 8. In this 

figure, f(x) is the function to be approximated by the 

polynomial, P(x). The range of the approximation is from 

X = BW to X = 1. The limits within which the approximation 

must fall are H^fx) and Hgfx). This notation is used 

throughout the discussion. 

There are four possible combinations of factors 

affecting the shape of P(x) in Figure 8. These factors 
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are the end condition slopes and the number of pass band 

ripples. Figure 8a indicates the shape of P(x) for an 

even number of pass band ripples and a positive slope at 

X = 1. In Figure 8b, the number of ripples Is odd and 

there is a positive slope at x = 1. If a negative slope at 

X = 1 is desired, P(x) is reflected about f(x) and 

approaches Hq^(x) instead of Hg at the uppermost approach 

point. 

2. Limiting functions 

In the coefficient method the limiting functions, 

H^fx) and Hgfx), are of more Importance than the actual 

function to be approximated since these functions define 

the range of variation for the polynomial being developed. 

These limiting functions are functions of x and are not 

limited to being equi-spaced about the function f(x). 

There arc tv,'o methods of defining these limiting 

functions for use with the coefficient method. The first 

involves the use of f(x), the function to be approximated, 

and is Illustrated in Figure 9a. In this procedure, the 

limits are defined by Equation 15. 

Hi(x) = f(x) -f hi(x) 

(15) 

Hgfx) = f(x) 4- h2(x) 

The functions, h^fx) and hpfx), may be any finite single-
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valued functions of x, subject to the restriction 

H^(x) > f(x) > HgCx). 

A more general method of defining the limiting functions 

is shown in Figure 9b. In this method the limiting 

functions are defined independently of the function to be 

approximated. Indeed, no function, f(x), has to be 

specified. For computational purposes the limiting func­

tions are defined in this manner no matter which method is 

used in their specification. 

3. Arbitrary parameters 

The desire for arbitrary parameters within the approxi­

mation method is predicated upon the application of this 

method to a variety of network design problems. Families 

of networks can be formed using these arbitrary parameters 

and certain inter-component constraints satisfied by given 

family members. Also, these parameters may be used to 

control directly some specific characteristic of the net­

work such as cut-off or d.c. behavior. 

In order for the arbitrary parameters to be used to 

control a variety of characteristics or to satisfy various 

inter-component constraints, it is necessary to use a 

variety of parameter definitions. Some of the parameter 

definitions available using the coefficient method include 

polynomial coefficients, points through which the plot of 

the polynomial must pass, zeros of the polynomial and the 
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slope of the polynomial at a point. The d.c. behavior of 

the resultant network can be specified by control of the 

constant term of the polynomial, ag. Network cut-off 

characteristics may be affected by variation of the 

coefficient of the highest power of x, and the slope 

of the polynomial at a point. 

There is one restriction on the choice of the arbitrary 

parameter value. The value of this parameter must not force 

the resulting polynomial to cross the limiting functions 

within the range of the approximation. 

4. Improvement in the method of computation 

The coefficient method requires computation methods 

which are much less complicated than those of the extremum 

method and therefore it can be made faster and more accurate. 

The major computations required during one iteration of 

the coefficient method are the solution of a system of 

n + 1 linear equations and the factoring of a set of 

polynomials. Both of these computations may be accomplished 

using standard library procedures. For improved perform­

ance, special purpose techniques for performing these 

operations could be designed, but these are not necessary. 

B. Development of the Coefficient Method 

The coefficient method is a technique for developing a 

family of polynomials which fall within two limiting 
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functions, H^(x) and Hgtx), over the range of x from BW to 

one and are tangent to thse limits at the points of inter­

section. The discussion of this method is based on Figure 

10, The notation used is defined by this figure. Figure 

10 illustrates only one of the four possible configurations 

discussed in Section IV, A, 1. 

The following steps are performed during each iteration 

in the process of forming a polynomial, P(x), which meets 

the requirements stated above. 

1. A set of estimates to the points of tangency of 

the approximating polynomial and the limiting functions is 

obtained. These points, labelled x^ in the diagram, are 

obtained either from the previous iteration or externally. 

2. A polynomial, P^fx), is formed which intersects 

H^fx) and H2(x) at the x^ and passes through the specified 

end points. The formation of this polynomial includes the 

m arbitrary parameters and requires the solution of a set 

of n + 1 simultaneous equations. 

3. The polynomial formed in step 2 is tested for 

points at which the derivative is equal to that of the 

correct limiting functions. 

4. The set of estimates, Xj^, is compared with the set 

of equal slope points, Xj_, to determine if they are 

coincident within some measure of error. If so, the 

polynomial P^fx) is a solution. 
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5. If the polynomial Is not acceptable as a solution, 

a new set of is formed based upon the previous and 

the computed equal slope points, X^. 

6. Steps 2 through 5 are repeated until a satisfactory 

polynomial is formed. Additional details concerning these 

steps is given in the following discussion. 

1. Data input 

There are two types of input required by the coefficient 

method. The first type includes all necessary data about 

the characteristics of the resultant polynomial. The second 

input defines the limiting functions on the approximation. 

The polynomial data necessary are the polynomial order, 

the number of arbitrary parameters, the number of pass band 

ripples, the dimensions of the pass band, the upper limit 

in the allowable error measure and the approach point esti­

mates. The order of the polynomial to be used depends upon 

many factors including the shape of limiting functions, the 

number of pass band ripples desired, the number of 

arbitrary parameters needed and the desired precision of 

the approximation. If the form of the network to be 

synthesized is specified, this will be a determining factor 

in the polynomial order also. There is a relation between 

the number of pass band ripples, the number of arbitrary 

parameters and the order of the polynomial. If one of 

these data is varied, a change must be made in the others 
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to maintain this relationship. For an even polynomial of 

order 2n the number of pass band ripples plus arbitrary 

parameters must be n-1. 

The second type of data required is that necessary to 

define the limiting functions in a form which can be used 

in the computational scheme employed. Unless the functions 

can be expressed as polynomials, it is more convenient to 

reduce the functions to a data table and use table look-up 

procedures where necessary. This process allows all 

functions to be handled using the same basic computational 

procedures regardless of the method of defining the limits. 

If the limiting functions are polynomials, the overall 

computations may be simplified by a special purpose pro­

cedure. 

2. Initial estimates 

The terms symbolized by are the initial estimates of 

the values of x at which the polynomial is tangent to the 

limiting functions. This same symbology is used to describe 

the revised estimates supplied to any other cycle by the 

previous cycle. 

Without previous experience, there is no good way of 

making an accurate estimate of the x^, especially if the 

limiting functions are complicated functions of x. Since 

the method of computation .developed for the coefficient 

method does not require the solution of a system of non-
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linear equations, the choice of the Initial estimates Is 

not as critical as in the extremum method. Experience 

gained In developing the polynomials described In Section V 

has shown that the coefficient method will converge to a 

solution for any reasonable estimate of the approach points. 

3. Coefficient equation system 

The second algorithm of Remes (10, 11) was adapted to 

provide a method for developing the coefficients of a test 

polynomial having the form of Equation l6. 

P(x) = a^x^" 4- agX^H-Z + _ ̂ a^x^ + a^^^ ( I 6 )  

The system of n-1 equations given as Equation 17 uses 

the a^ coefficients as the unknowns and powers of x^^ as the 

equation coefficients. This set of equations is written 

as though the polynomial Intersects the upper limit at x^ 

and the lower- limit at as in Plgi^re 10. Two additional 

2n 2n-2 2 , 1 \ 
&i%i &2%i + ... + + &n+l " l(*l) 

â Xĝ "̂  + &2%2̂  ̂̂  + ... + â Xg + â ^̂  = (17) 

*l%n-l &2Xn-l^^ ̂  + ... + &n+l " 

equations are needed which define the end point conditions. 

These two equations, given below as Equation I8, plus the 
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(n-l) equations defined by Equation 17, are the (n+1) 

equations needed to determine the (n+l) coefficients of an 

P(BW) = 

(18) 
P(l) = Kg 

even 2n^^ order equation. The two constants, and K2, In 

Equation 15 are values of P(x) at the end points of the 

pass band. These values may be selected arbitrarily subject 

only to the restrictions H]^(BW) < < H2(BW) and 

Hi(l) < Kg ^HgCl). This set of equations describes the 

conditions Illustrated in Figures 8a and 10 and is used as 

one possible example of the four possible described in 

Section IV, A, 1. 

Equations 17 and I8 are written as though there are 

no arbitrary parameters. With each arbitrary parameter 

used, the number of equations in Equation 17 Is reduced by 

one and replaced by an equation which defines the param­

eter. If, as is common, one of the coefficients of P(x) 

is used as a parameter, one equation in the system 

described by Equation 17 is replaced by a^ = where 

K^ is an arbitrary constant. Thus the system of equations 

to be solved consists of m equations defining the param­

eters, n-m-1 equations for the x^ conditions as in Equation 

17 and the two end conditions of Equation I8. 

The a^ coefficients are the unknowns in the system of 



www.manaraa.com

57 

equations formed by combining Equations 17 and l8 and the 

equations defining the arbitrary parameters. Since the a^'s 

are the unknowns, the system of equations is linear except 

for the right hand side of the equations which are func­

tions of X. However, because an estimate of x is used and 

the limits are defined for all x, these functions appear as 

known values for any one Iteration. The value of these 

functions will vary with succeeding Iterations. 

4. Formation of an approximate polynomial 

Once the system of equations has been solved for the 

polynomial coefficients, an approximate polynomial, 

Pg^(x), may be formed. This polynomial, as shown in Figure 

10, passes through the estimates of the approach points, 

Xj_, and satisfies the two end conditions. This polynomial, 

must be examined to determine the points of equal slope, 

X^, in order to ascertain whether or not it may be con= 

sidered a solution. 

5. Approach conditions 

Before P^(x) can be considered a solution, it and the 

limiting functions must have equal slopes at their points 

of Intersection. This condition Implies that the two 

curves do not cross as shown in Figure 11a but become 

tangent as shown in Figure lib. 

The crossing and overshooting shown in Figure 11a is 
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due to the slope of P^(x) being larger than the slope of 

H(x) as Pa(x) approaches H(x). This Is the condition which 

requires a tangential approach to the limits rather than 

the extrema approach used in the extremum method. The 

curves of Figure lia satisfy the extremum approach in that 

the second intersection occurs at the extremum of P(x), 

but overshooting occurs. The tangential approach of Figure 

lib ensures that overshooting will not take place unless 

there are abrupt changes in the slope of H(x). 

Since there are two methods of defining the limiting 

conditions, explicit mathematical expression or piece-wise 

linear approximation, two methods for testing the approach 

conditions are required. The first of these Is applicable 

whenever the limiting functions are expressed as poly­

nomials and the second is used whenever the limiting 

functions must be expressed as transcendental functions 

or as piece-wise linear approximations. 

For limiting functions which can be expressed as 

polynomials in x, the test of approach conditions requires 

the roots of Equation 19 to be found. If Hi(x) - H2(x) 

is a constant for all x over the range of the approximation^ 

only one of these equations is needed. Since factoring the 

Pa'(x) - H^'(x) = 0 (19a) 

Pa'(x) - Hg'tx) = 0 (19b) 
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two equations will give a total number of roots which is 

twice the number required, the roots must be arranged in 

numerical order and selected to ensure that the limits are 

approached alternately. Using Figure 10 as an example, 

the first root is selected from the set found by solving 

for the roots of Equation 19a. The second root is selected 

from the roots of Equation 19b and so on until the appropriate 

number of roots has been selected. This set of roots is the 

set of points of equal slopes designated in Figure 10. 

If H^fx) and Hgfx) are not polynomials. Equations 19a and 

19b are not easily factored and piece-wise linear approxi­

mations must be used. 

In the event that the limiting functions must be approxi­

mated in a piece-wise linear fashion, the test for equal 

slope points becomes more complicated. Equation 19 must 

be replaced by a system of equations each having the form 

given in Equation 20. In this equation the x^'s represent 

Pa'(x) - SL(x^) = 0 (20) 

the approach point estimates and it is necessary to find 

the roots of as many equations of this form as there are 

approach points to be tested. The term, SL(x^) is the 

slope of the piece-wise linear approximation in the 

vicinity of Xj,. In this case, as in the one above, there 

are more roots than are needed and appropriate values for 
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the x^'s must be selected. 

There are many methods which could be used to select an 

appropriate set of roots to use as the points of equal 

slope. One method of selecting the proper root from each 

of the root sets Is illustrated by Figure 12. For each 

root set a range of values is specified and the first root 

falling within that range is selected. The method of 

specifying this range using midpoints as shown in the 

figure has proved successful for most of the polynomials 

developed. In the cases for which the midpoint method has 

failed, it has been found that a tightening of the range of 

the roots nearest unity has prevented oscillation about a 

solution and a final solution has been obtained. 

6. Test of the approach points 

At this point in the computation cycle, there are two 

sets of values for x. The first Is the original set of 

estimates used to form Equation 17 and to determine the 

coefficients of the test polynomial. The second set is 

that obtained from the approximate polynomial in the manner 

described in the previous section and which satisfies the 

approach condition. The difference between these two sets 

is used as a measure of convergence. 

The test for convergence is based on the sum of the 

squares of the differences between the two sets of estimates. 

When this sum of squares is less than some specified maximum. 
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the test polynomial is considered to be a solution to the 

approximation problem. Through experience it has been 

found that, with proper choices of the value of the 

arbitrary parameter, this maximum value should be 10"^ or 

less. For some choices of the value of the arbitrary 

parameter, it has been found that the polynomials are 

sensitive to changes in the approach points. Therefore, 

the maximum value of the measure of convergence must be 

made smaller than the value of 10"^ suggested. 

If the measure of convergence is greater than the 

prescribed maximum, the set of x's which do satisfy the 

approach conditions can be used as the next set of approach 

point estimates for the next cycle of calculations. This 

choice permits rapid convergence to a solution but also 

Increases the tendency of the method to diverge. To reduce 

the possibility of divergence, a revised set of estimates 

is used whenever the most recently computed measure of 

convergence is greater than the previous minimum. The 

method of revision chosen was to use the midpoint between 

the previous best estimates and the present estimates as 

the input to the next cycle. There are many other possible 

revision techniques, but this one has been found to 

prevent divergence and permit convergence to a solution 

within a reasonable number of Iterations. 
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C. Properties of the Coefficient Method 

The coefficient method as derived in the previous sections 

has all the desired characteristics listed in Section IV, A, 

This method permits the formation of a multi-parameter family 

of polynomials all of which are approximations to the same 

function. The limits on the allowed deviation from this 

function may be arbitrary functions of x. The function to 

be approximated and the limits within which the approximation 

must remain may be defined either as explicit mathematical 

functions or as data tables. 

1. Control variables 

There are properties of the approximation other than the 

arbitrary parameters which can be easily varied as input 

parameters. These properties include the magnitude of the 

variation about the function, the band width of the approxi­

mation, and the order of the polynomial. 

The magnitude of the allowed variation from the desired 

function Is accomplished by varying the limiting functions. 

This is done either by redefining some explicit function 

or by providing a new data table to describe the functions. 

The band width, or range of x over which the approxi­

mation is to be made, is changed by varying the lower cut­

off frequency. This band width parameter is symbolized as 

BW in Figures 8 and 10. Since the upper cut-off value has 

been normalized to unity, this parameter is defined as 
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some fraction of this upper range and as such will always be 

less than one. 

The order of the polynomial to be formed is controlled 

by an input quantity. When the order of the polynomial 

is changed, either the number of approach points within the 

pass band must be changed or the program must be redesigned 

to accommodate an increase in the number of arbitrary 

parameters. 

Another characteristic of the method which may be con­

sidered as variable is the method of approach to the limits. 

All previous discussion has dealt with the method using 

the tangential approach. In theory, this approach condition 

may be changed, although, in practice, it will seldom be 

necessary to do so. One change which may be of practical 

importance deals with the idea of closest approach Instead 

of actual equality. If this is desirable, the equality 

signs of Equation l4 must be changed to inequality signs 

and the problems in computation become much more severe. 

An alternative to this change is the possibility of varying 

the limits to within the original set and attempting to 

form the more précisé approximation. If the limiting 

functions are properly defined, this problem should never 

arise in practice. 
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2. Comparison with the extremum method 

The extremum method was designed to be a special purpose 

approximation technique to solve a particular problem. For 

this purpose It has proved to be satisfactory. The co­

efficient method was designed to be a versatile multi­

purpose approximation technique which could be applied to a 

wide range of problems. So far as can be determined from 

present experience. It also performs satisfactorily. 

The coefficient method permits the formation of multi­

parameter families of polynomials which approximate various 

functions to within limiting functions which may vary with 

the Independent variable. The extremum method is limited to 

form multi-parameter families of polynomials which approxi­

mate a constant in an equl-rlpple manner. It is possible 

that the extremum method could be revised such that the 

equl-rlpple characteristic is not a requirement, but since 

the coefficient method is available, it is preferable to 

use the coefficient method and to consider the extremum 

method as a special purpose technique only. 

Since it contains a band width control factor which is 

variable J the coefficient method can be used in the design 

of band pass filter networks. The extremum method was 

designed to be used in the design of low pass filter net­

works. Once again, it is possible to revise the extremum 

method to enable it to be used for low pass and band pass 
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design, but the coefficient method makes this revision 

unnecessary. 

The two methods were derived using similar hypotheses. 

Despite this similarity in origin, the calculations 

Involved in the two methods are quite different. Both 

methods require the solution of a system of equations which 

includes both linear and nonlinear equations. In the 

extremum method, the degree of nonllnearity is very high 

and most of the problems in the computation are due to this 

nonllnearity. In the coefficient method, the degree on non-

linearity is very low and no solutions of system of non­

linear equations are actually required. 

Improved methods of factoring polynomials and solving 

systems of nonlinear equations would increase the usefulness 

of both methods by significantly reducing the time required 

to reach a solution. 

3. Comparison with other methods 

Of the methods of approximation outlined in the intro­

duction only the method developed by D. S. Humpherys (8) 

is similar enough to the coefficient method to permit 

meaningful comparison. The other methods mentioned are 

limited in their application by lack of flexibility. 

The method proposed by Humpherys is designed to produce 

rational function approximations of a polynomial in an 

equl-rlpple fashion. The use of a rational function to 
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accomplish the approximation Is one major difference between 

Humpherys' method and the coefficient method, which uses a 

polynomial for the approximation. There are advantages 

associated with either specification. Use of polynomials 

allows the numerator and denominator polynomials of a net­

work function to be specified separately. The entire 

function may be specified as a unit if a rational function 

approximation is used. The particular application is the 

determining factor in the decision of which specification 

is to be used. 

Humpherys' method is more general than other rational 

function approximation techniques. It does permit the 

approximation of a variety of polynomials in an equl-rlpple 

manner with fewer than the maximum number of pass band 

ripples. Therefore, it permits the use of arbitrary 

parameters similar to the coefficient method. In the method 

as described, these arbitrary parameters are limited to 

imaginary zeros of either the numerator or denominator 

polynomials. It is possible that the method could be 

revised to allow other definitions of the arbitrary 

parameters. However, if this were done, the simplicity 

of the computations would be lost. 

The major advantage of Humpherys' method is the fact 

that only simple linear equations must be solved once a 

proper set of conditions has been established. This 
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simplicity is a result of three limitations on the method. 

The first limitation, as stated above, is the restriction on 

the choice of the arbitrary parameters. The second limita­

tion involves the approach condition. Humpherys' method 

assumes that an extremum approach will be adequate for the 

functions to be approximated. It has been shown in this 

thesis that this is not necessarily true. The third limita­

tion Is that the function to be approximated must be 

expressed as a polynomial. Any of these limitations may be 

removed by proper revision of the method, but this is 

accomplished at the cost of increased complexity of the 

required computations. The coefficient method was designed 

to be free of these limitations and thus requires much more 

in the way of computation than does the method of Humpherys', 

however it is more versatile. 

4. Problems associated with the coefficient method 

The major problems associated with the coefficient 

method are those due to difficulties in the computational 

processes. These difficulties result in reduced accuracy 

and increased computation times. Unlike the extremum 

method, there is no requirement that a system of nonlinear 

equations be solved. Instead, the coefficient method 

requires that, during each Iteration, a number of poly­

nomials equal to the number of points of approach within 

the pass band be factored. An estimated 80 percent of the 
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time required for each cycle is used in these factoring 

processes. This time is reduced appreciably if the 

limiting functions can be expressed as polynomials since 

for that case, only two polynomials must be factored for 

each cycle. At present, industry supplied programs are 

used for factoring these polynomials. These are iterative 

methods and may, in some cases, diverge or give inaccurate 

answers. For examples in which the limiting functions 

have large slopes these inaccuracies are often large enough 

to prevent the method from converging to a solution. 

One possible solution to the above problem is the design 

of a special purpose program to factor the polynomials. 

The programs now used are general purpose methods used to 

find all the roots of the polynomials. Since only the 

positive real roots falling within a given range are of 

interest, a program could be designed to find only these 

roots. Such a program could prove to be faster and more 

accurate than the general purpose ones now used. 

A problem arises whenever the limiting functions have 

abrupt changes in slope, It is possible that in the 

vicinity of such changes the apprûxlniàtlrig polynomial 

may overshoot the limits (See Figure 23, Section V, B for 

an example). There are two possible solutions for this 

problem. The first would be to include within the program 

additional calculations which would test every point along 
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the curve for such overshooting. The second possible 

solution would be a redefinition of the approach conditions 

to include higher order derivatives. In either case, the 

increase in computation may be impractical and will not 

necessarily ensure that such limit crossings do not take 

place. 

Attempts to form a general program met with a general 

lack of success. Because of the large variety of possible 

arbitrary parameter definitions, no one program can include 

all choices. It is felt that the improved accuracy and 

reduced computation time possible with special purpose 

programs make such programs more desirable than an all-

purpose program which attempts to do everything for every­

body. Once the basic ideas are understood and several 

fundamental decisions have been made for the particular 

problem, the design of a specific program is not difficult. 

D. General Remarks 

The coefficient method developed in this section of the 

thesis allows the formation of multi-parameter families of 

polynomials. Within these families, all polynomials have 

graphs which fall between two limiting functions. The 

number of parameters used and their definitions may be 

chosen at will and thus may be used to shape specific 

portions of the network frequency response. The limiting 

functions to be used are not restricted to explicit 
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mathematical expressions, but may be defined as data tables, 

thus permitting an almost unlimited choice of limiting 

functions. 

Several problem areas do exist in the actual calculations 

involved in the coefficient method, but these do not detract 

from the ideas behind the method. These problems are largely 

results of programming difficulties. As improved methods 

of analysis and calculations are developed, the effects of 

these problem areas will be reduced. 

Unlike the extremum method, the coefficient method was 

designed to be as general as possible and not as a solution 

to one particular problem. For this reason no complete 

design, similar to that of Section III has been carried out 

using the coefficient method. At the time of this writing, 

it has been used in the design of a more sophisticated 

transducer than that of Section III, but the design is not 

complete. 
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V. EFFECTS OF CONTROL FACTORS 

There are several control factors within the coefficient 

method, exclusive of the arbitrary parameter, which affect 

either the convergence to a solution or the properties of 

the approximation polynomial being formed. This section 

Includes a discussion of these factors and illustrates the 

effects on the polynomials being formed when these factors 

are changed In value. 

The first factors of Interest are those which affect 

the tendency of the method to converge to a solution. In 

many cases these factors have no direct effect on the 

approximation, although they may permit formation of a more 

precise approximation. This precision is usually indicated 

by the behavior of the polynomial in the vicinity of the 

approach points. The more precise the approximation, the 

closer the polynomial and the limiting function approach 

true tangential Intersection, These factors include the 

maximum value of the measure of convergence, the value of 

the particular arbitrary parameters being used and the 

approach point estimates. 

The second set of factors of interest includes those 

factors which directly affect the shape of the approximating 

polynomials and the range of the approximation. These 

include the pass band width factor, the order of the poly­

nomial, the limiting functions and the number of ripples 



www.manaraa.com

74 

within the pass band. These factors are specified inde­

pendently of the arbitrary parameter definitions or their 

numerical values and define the approximation problem. 

A. Factors Affecting Convergence 

The factors affecting the convergence of the coefficient 

method which are of interest are those which have an effect 

on the convergence properties but are not part of the approxi­

mation definition. 

1. Maximum measure of convergence 

The measure of convergence within the coefficient method 

has been defined as the sum of the squared differences 

between the original estimate set used to initiate any one 

iteration and the set of improved estimates resulting from 

that iteration. This sum must be less than some specified 

maximum measure of convergence before the polynomial formed 

in that iteration can be considered to be a solution. 

The selection of a value to be used for this maximum 

is dependent upon several considerations. Among the points 

to be considered are the shape of the limiting functions, 

the number of pass band ripples and the values of the 

arbitrary parameter. 

The shape of the limiting functions has a decided 

affect upon the convergence and the precision of the 

approximation for a given maximum measure of convergence. 
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For a required precision, the maximum measure of convergence 

must be reduced in problems containing limits which have 

large slopes to avoid significant errors in the area of 

maximum slope. 

The number of pass band ripples affects the necessary-

value of the maximum measure of convergence because of the 

definition of this quantity as a sum of terms. For a given 

number of pass band ripples, the average precision of each 

approach point can be defined as the maximum measure of 

convergence divided by the number of p8,ss band ripples. 

Therefore, the solution to an approximation with many pass 

band ripples must be more precise than that for one with 

fewer ripples using the same measure of convergence because 

the average allowed deviation is smaller. For this reason 

the allowed maximum measure of convergence must be based 

upon the number of pass band ripples. The larger the 

number of ripples, the larger may be the maximum measure 

of convergence. 

Another factor affecting the selection of the maximum 

measure of convergence is the value of the arbitrary 

parameter. As is discussed in more detail in the following 

section, this value has a direct effect on the sensitivity 

of the polynomial to changes in the approach points and 

must be considered in the choice of a proper convergence 

factor. 
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The number of Iterations required for solution is 

strongly dependent upon the maximum allowable value for the 

measure of convergence. For well behaved functions a value 

of 10"^ has proved to be satisfactory in permitting rapid 

convergence to a solution and a precision to within 1 percent. 

If the value is reduced by a factor of 10 the number of 

iterations required for solution will more than double. As 

the value is reduced further, the number of iterations 

required for a solution increases rapidly. 

The value for this maximum measure of convergence used in 

the examples of this section was 10"^. This value was chosen 

as a compromise between adequate precision and rapid con­

vergence to a solution. As can be seen on several of the 

figures, this value is not always low enough for acceptable 

precision. In some cases of rapidly converging iterations 

the actual measure of convergence was as low as 10"®. 

2. Optimum range of parameter values 

If the value of the arbitrary parameters is chosen at 

random, the convergence to a solution may be affected. It 

is possible to select values for which the method will not 

converge within some finite number of limits. Attempts 

to form a polynomial to approximate x^ failed to converge 

within 200 iterations for one choice of the value of the 

arbitrary parameter. When this value was changed, con­

vergence to a satisfactory solution was obtained within 20 
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Iterations. This same effect has been noted in many of 

the examples solved while testing the method. 

Experience has shown that for most problems there is an 

optimum range for the value of the arbitrary parameters. 

For values within this range, convergence is obtained 

rapidly and the approximation does not overshoot the limits 

or fail to intersect the limits. Polynomials formed using 

parameter values outside of this optimum range are sensitive 

to changes in approach points and do not become tangent to 

the limiting curves unless the maximum measure of conver­

gence is reduced by at least an additional factor of 10 

below that needed for approximations using values within 

the optimum range. 

Several of the examples which follow illustrate this 

increased sensitivity to changes in approach points. This 

is usually manifested by failure of the curves to become 

tangent to the limit curves. This failure can be overcome 

by either changing the value of the arbitrary parameter 

or reducing the maximum allowable measure of convergence. 

3, Approach point estimates 

The convergence to a solution of the coefficient method 

is not strongly dependent upon the initial estimates of 

the approach points. This freedom from the requirement 

for an accurate set of estimates is primarily due to the 

fact that only linear equations are used in the iterative 
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process. Experience using the method has indicated that 

the process will converge for a variety of estimates within 

the pass band. 

For most of the examples which follow, the same set of 

approach point estimates was used. The number of iterations 

required for convergence varied with the problem being 

solved from a maximum of 39 to a minimum of 8. For examples 

in which estimates were obtained from previous solutions 

convergence to a solution occurred within 10 iterations. If 

no previous knowledge of accurate approach point estimates 

is available, it has been found that a set of points roughly 

equally spaced between BW and one serves as a satisfactory 

set. 

B. Factors Affecting Polynomial Shape 

Within the coefficient method there are factors which 

may be varied to control the shape of the approximating 

polynomial. These factors are used to define the approxi­

mation problem and are chosen Independently of both the 

arbitrary parameters and the factors which affect the con­

vergence conditions. These control factors include the 

band width of the approximation, the spacing between the 

limits, the order of the polynomial, the approach conditions 

and the method of defining the limiting functions. 

Each of these factors is discussed and Illustrated in 

the following sections. In each case only the factor being 
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discussed is varied, although In several cases a family of 

curves is shown due to variations In the arbitrary 

parameter. 

1. Band width 

For purposes of this thesis the term "band width" is 

defined to mean that portion of the total frequency 

reponse within which the response shaping is to be performed. 

In many of the curves shown there is no sharp cut-off of the 

high or low frequency response, but rather a gradual sloping 

away from that part of the response which was to be shaped 

by the polynomial. 

The polynomials formed for this example are one-

parameter approximations to x within t 0.33x. The co­

efficient of x^^ was chosen as the arbitrary parameter and 

set equal to 600. The tangential approach condition was 

used. 

Figure 13 shows the curves of the polynomials which 

result when the width of the pass band is varied. The 

values of the band width factor, BW, are 0.05, 0.10, 0.15, 

and 0.20. As the width of the pass band is decreased, the 

cut-off at low frequencies becomes more apparent. For low 

values of the band width parameter, there is little 

decrease in response below the lower cut-off frequency. 

Even though the measures of convergence are similar 

for the four polynomials, there are obvious errors in the 
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approximation as the band width parameter is increased. 

This indicates an increased sensitivity to changes in the 

points of approach to the limits. This increased 

sensitivity may be reduced and the errors in the approxi­

mation eliminated by proper choice of the value of the 

arbitrary parameter. In each of the polynomials plotted, 

the value of the arbitrary parameter was held to 600. 

a. BW = 0.20 A2n = 600 ripple factor = 0.33 

P^(x) = 600x^^ - 1615x^2 4- 1437%^° - 339.8x8 

- 157.8x^ + 86.47x4 - 10.17x2 + 0.5454 

b. BW = 0.15 A2n = 600 ripple factor = 0.33 

P^(x) = 600x^4 - 1650x12 + 1560x10 - 510.8x® 

- 42.48x^ + 47.74x4 - 4,378x2 + 0.2741 

c. BW = 0.10 A2n = 6OO ripple factor = 0.33 

P^(x) = 600x^4 _ 1637x12 + 1643x10 - 623.3x® 

- 31.81x6 ^ 23.69x4 - 1.011x2 o.l408 

d. BW = 0.05 A2n = 600 ripple factor = 0.33 

Pa(x) = 600x14 _ 1687x12 + l697x^° - 706.5x® 

+ 91.05x6 + 4.048x4 ^ 1.599x2 + 0.0625 
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2. Spacing between limits 

In some approximation problems it may be desirable to be 

able to vary the spacing between the limiting functions 

without actually varying the functions themselves. This Is 

especially true In those cases In which the limits are 

defined by explicit mathematical expressions. 

In the approximation problems of the previous example, 

the limiting functions were defined as; 

H^(x) = 1.33X 

HgCx) = 0.67X 

For purposes of varying the ripple (i.e., changing the 

spacing between the limiting functions) the limiting 

functions are defined by Equations 21. As the ripple 

factor, R, is varied, the limiting functions change as 

Hi(x) = (1 + R)x 

(21) 

Yi^{x) = (1 - R)x 

shown In Figure l4. The polynomials plotted in this figure 

are; 

a. R = 0.25 Agn = 600 BW = 0.1 

p^(x) = 600x^^ - 1784x12 + 1960x1° - 956.8x& 

+ 188.9x^ - 8.129%^ + 1.149x2 + 0.1143 
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P(X) 

FIGURE 14. EFFECTS OF LIMIT SPACING CHANGES 
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b. R = 0.33 Agn = 600 BW = 0.1 

P^(x) = 600x^ - 1673x^2 + 1644x10 _ 534.Ox® 

+ 32.14x6 + 23.65x4 - l.OOyx^ + 0.l408 

c. R = 0.50 = 600 BW = 0.1 

Pç(x) = 600x14 _ 1347x12 + 755.8x10 ̂  259.4x8 

- 358.7x^ + 97.61x4 _ 5.729%^ + 0.1979 

As In the previous example, there is an apparent change 

in polynomial sensitivity to changes in points of approach. 

A better choice of values for the arbitrary parameter will 

reduce the error caused by this Increased sensitivity. 

The polynomial 

P(x) = 6x14 _ 16.2x12 + 16.5x10 - 8.11x® + 2.78x^ 

+ 0.114x4 - 0.000843x2 + 0.0000573 

is a one parameter approximation to over the range 

x = 0.1 to x = 1.0 using a ripple factor R = 0.01. No 

problems regarding convergence were encountered once the 

value of Ag^ was reduced in values below 20. This 

approximation is illustrated in Figure 15. No attempt 

has been made to approximate a function using a smaller 

ripple factor. 
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3. Polynomial order and pass band ripples 

One of the more Important properties of the coefficient 

method allows the order of the polynomial being formed to 

be varied without affecting the remainder of the approxi­

mation definition. The only limitation on this variation 

is dictated by the interrelation of the polynomial order, 

the number of pass band ripples and the number of arbitrary 

parameters. Unless a change in the number of arbitrary 

parameters Is desired, the number of pass band ripples must 

increase as the order of the polynomial increases. 

One Important consideration in the choice of the order of 

the approximating polynomial must be in the shape of the 

function being approximated. If the approximating polynomial 

has its maximum slope less than the slope of the function 

being approximated in the range of the approximation, there 

is a minimum spacing between limits which is dictated by 

this condition. Normally, the approximating polynomial will 

be chosen to have order high enough so this condition should 

never arise in practice. 

The preceding examples have used polynomials of 

fourteenth order and one arbitrary parameter thus requiring 

five pass band approach points. The polynomials plotted 

in Figure 16 were developed using the same program that was 

used for the other polynomials with one change. For this 

family of polynomials plotted the order of the polynomials 
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was reduced to ten. This reduced to three the number of 

points at which the polynomial approaches the limiting 

function. The polynomials plotted are; 

P^(x) = 10x^° - 2.727X® - 17.32x6 + 11.31x4 

- 0.0674%^ + 0.1326 

p̂ (x) = 20x10 - 26.27X® + 0.9353x̂  + 6.286x4 

+ 0.2496x^ + 0.1299 

p̂ (x) = 30x^0 - 50.34x8 + 20.19x6 + 0.7169x4 

+ 0.6335x^ + 0.1266 

The value of the arbitrary parameter was reduced to 

obtain convergence, and allowed to vary to produce a family 

of polynomials. 

The polynomial 

P(x) = lOOx^® - 5800x^6 _ 2305x14 + 35891x^^ 

+ 12319x8 - 28548x^0 - 2804x6 + 297x4 

- 9.366x~ + 0.1974 

was developed using the same program as the other polynomials 

of this section. The order of this polynomial was raised to 

eighteen and the number of pass band approach points to 

seven. The band width factor was 0.1 and the ripple factor 
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0.33. This polynomial is plotted In Figure 17. 

The value used as the arbitrary parameter Is not 

within the optimum range, as is obvious by noting the errors 

at high values of x on the plot. From experience with the 

tenth and fourteenth order polynomials, it appears that the 

value of the arbitrary parameter should be Increased by at 

least a power of ten for improved results. 

As should be expected, these polynomials were the first 

to indicate convergence times which differed significantly 

from the other examples. The time and the number of itera­

tions required for convergence is directly related to both 

the order of the polynomial and the number of approach 

points within the pass band. The reason for the dependency 

on the polynomial order is the number of operations required 

to solve a system of equations and to factor the polynomials. 

The number of operations required by both these calculations 

rises exponentially with Increasing polynomial order. 

4. Approach conditions 

Although the approach condition is not properly a 

variable factor in any one approximation definition, its 

definition does affect the shape of the curves and the 

precision of the approximation. The two approach condition 

definitions which must be considered are the tangential 

approach and the extremum approach. The tangential 

approach is the one used In all examples of Sections V 
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and VI with the exception of the special example of this 

section used to Illustrate the extremum approach. 

To illustrate the effects of an extremum approach, a 

family of fourteenth order polynomial approximations to x 

is plotted in Figure l8. This is a one parameter family 

of polynomials using the constant term as the arbitrary 

parameter. To accentuate the effect of the extremum 

approach the ripple factor was chosen to be 0.5. Typical of 

the polynomials plotted are 

P^(x) = I453x^^- 4460x12 + 5129x1° - 2697x® 

+ 617.2x6 - 41.88x4 + 0.3591x^ + 0.15 

P^(x) = 544.1x14 _ 1281x12 + 765.1x1° + 215.7x^ 

- 344.Ix̂  + 97.74x4 _ 5.943x2 + o.20 

The values used for all polynomials of this family are 

BW = 0.1 and R = 0.5. 

There is little noticeable overshooting of the lower 

limit due to the fact that the polynomial approaches this 

limit with a slope greater than that of the limit curve. 

At the upper limit, the slope of the polynomial near the 

extremum is less than that of the limit curvc and notice­

able overshooting is present. As the value of x increases, 

the polynomial becomes more peaked at the approach points. 

For this reason the overshooting of the upper limit is 
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less apparent for large x, and more apparent overshooting 

of the lower limit occurs at low values of x. It sliould 

be noted that the extremum approach condition is satisfied 

since the polynomials are equal to the limiting curves at 

the extrema of the polynomial. 

5. Limit definitions 

There are two methods of defining the limiting functions 

to be used in forming an approximating polynomial within the 

coefficient method. The first of these requires a central 

function, f(x), and establishes limits as positive and 

negative deviations from this function. The second method 

does not require this central function but defines the 

limiting functions directly. The following examples 

illustrate the two methods of limit definitions. 

The previous examples have all used central functions 

which were simple polynomials in x and defined the limits 

about this value. Figures 19 and 20 illustrate approxi­

mations to central functions which are not rational 

functions of x. The function used in Figure 19 is 

f(x) = x^/^ and that used in Figure 20 is f(x) = x^'^. 

Since these are irrational functions of x the limits 

become irrational functions of x and piece-wise linear 

techniques were used in the approximation. 

Figures 21, 22, and 23 show plots of polynomials 

formed using the second definition of the limiting 
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functions. In Figure 21, the limits are defined as sine 

wave segments. The limits used for forming the curves in 

Figure 22 are; 

Hi(x) = 1.05 + 0.1x5 

Hgfx) = 0.95 - 0.1x5 

One weakness of the coefficient method as it is pro­

grammed is illustrated by the polynomials plotted In 

Figure 23. In this example there is an abrupt change in 

the slope of the limiting curves. In the vicinity of this 

change in slope, the curves of the polynomials fall outside 

the limits. Since there is no test to detect this condition 

in the program, the only means of discovering this type of 

error is by examination of the curves of the polynomials as 

they are developed. In this example it was noted that the 

error became more pronounced as the value of the arbitrary 

parameter Increased. Therefore, one possible correction 

is the reduction of the value of this parameter. 

It is felt that the detection of errors by the 

examination of the curves as they are plotted is a faster 

and surer method than is possible by introducing tests 

for all possible undesirable conditions into the approxi­

mation program. 

The polynomials plotted in Figure 21 are; 
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P^(x) = lOOx^^ + 64.14x12 _ 719.3x10 + 952.9x® 

- 490.4x6 + 95.64x4 _ 1.637x2 + 0.25 

P^(x) = 200x^4 _ 281.22x^2 _ 260.10x10 + 660.5x® 

- 401.3x6 + 84.69x4 _ 1.390x2 + 0.25 

Pq(x) = 300x14 _ 625.2x12 + 193.7x10 + 377.Ix^ 

- 319.Ox^ + 76.14x4 _ Q gg 

The polynomials plotted in Figure 22 are; 

Pa(x) = 100x^4 - 193.9x12 + 34.85x1° + 145.2x® 

- 112.5x^ + 28.67x4 - 2.169x2 + 1.00 

p^(x) = 200x14 _ 537.6x12 + 494.4x1° _ 150.7x® 

- 19.34x6 + 16.08x4 - 1.701x2 + l.OO 

Pg(x) = 300x14 _ 892.2x12 + 981.2x1° - 477.6x® 

- 0.0838x4 + 89.89x6 - 0.9867x2 +1.00 

The polynomials plotted in Figure 23 are; 

P^(x) - 100x1^ - 137.9x"^ - 156.6x10 + 385.9x^ 

- 246.7x6 + 59.60x4 _ 4 _ 1.10 
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Pb(x) = 200x^^ - 493.6x12 + 333.8x1° ̂  58.12x8 

- 140.7x6 + 45.13x^ - 3.883x^ +1.10 

Pc(x) = 300x^4 - 854.9x12 + 841.8x1° + 288.Ox^ 

- 240.05%^ + 28.29x4 - 3.210x2 +1.10 

In each of the examples of this section the lower end 

point condition was specified to force the polynomial 

midway between the limiting functions for x equal to zero. 

C. General Remarks 

From the results of the examples shown in this section, 

it may be concluded that the coefficient method does 

perform as predicted in its development. The examples 

given are not intended as limitations on the method, but 

were chosen as typical practical problems. Based on 

experience gained from the examples solved, several remarks 

can be made about the possible use of this method. 

1. Physical realizability 

One of the prime requirements of the polynomials 

developed using the coefficient method is that they result 

in functions which are physically realizable as electric 

networks. Use of the Method of Gewertz should ensure the 

physical realizability of functions which use the poly­

nomials in the denominator of the appropriate network 
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function. To demonstrate this, each of the polynomials 

developed in this section was used as the denominator of 

an approximate network function and synthesized as a 

lossless ladder network terminated in a one ohm resistor. 

Each function resulted in a physically realizable network 

with the exception of the one using the third polynomial, 

PQ(X), plotted in Figure 22. The function of s formed 

from this polynomial had only five poles with negative 

real parts instead of the necessary seven. This was caused 

by inaccuracies in the factoring routing due to the small 

4 
coefficient of the x term of this polynomial. 

2. Arbitrary parameter values 

In several of the examples it was noted that the 

precision of the approximation was due, in part, to the 

value chosen for the arbitrary parameter. Experience has 

shown that the choice of this value affects the sensitivity 

of the polynomial both to changes in approach points and 

therefore to the number of iterations required to reach 

a solution. Even though the process may reach a solution 

for some randomly chosen value of the arbitrary parameter, 

there is some optimum range of this value. Within this 

range, the polynomial is more rapidly formed and is less 

sensitive to changes in its properties. 

The networks formed using the polynomials are also 

affected by the choice of the arbitrary parameter value. 
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If the value used is within this range of best values, the 

network component values are more uniform. There may be 

a ten to one range in component values. If a value of 

the arbitrary parameter outside this preferred range is 

chosen, the ratio of component values may be as high as 

forty to one. Therefore, in the case of transducer design, 

it is often necessary to be sure the arbitrary parameter 

value is within the preferred range for satisfactory 

designs. 

3. Practical applications 

The practical applications of the coefficient method 

are due to its ability to form a family of networks with 

similar frequency responses and to form polynomial approxi­

mations to a wide variety of functions. Section VI Illus­

trates several applications of this method to problems in 

network synthesis. 
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VI. APPLICATION TO NETWORK SYNTHESIS PROBLEMS 

There are several areas within the field of network 

synthesis in which the versatility of the coefficient and 

extremum methods makes it possible to solve problems for 

which standard approximation techniques are not satisfactory. 

These are those problems which require constraints other 

than frequency response characteristics and those which 

require functions other than simple rational functions to 

be approximated. 

In this section several examples of practical problems 

which require specifications other than standard frequency 

response specifications are Illustrated. The examples 

include the use of the coefficient method to control the 

cut-off characteristic of a network by controlling the slope 

of the approximating polynomial at the upper end of the 

pass band. A second example illustrates the possibility 

of using the coefficient method to allow the synthesis of 

an all-pole or lossless ladder network to approximate the 

response of a lattice network which has a zero in the right 

half of the complex frequency plane. Other applications 

are discussed but not illustrated by specific examples. 

These examples are not Intended to Include all possible 

applications of the methods of this thesis, but are typical 

of the type of problem which may be solved by their 

application. 
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A. Control of Response Characteristics 

One type of constraint which cannot be included within 

the usual methods of network approximation is a definite 

specification on one particular characteristic Independent 

of the other response characteristics. For example, when 

utilizing Ghebyshev Polynomials, once the order of the 

polynomial to be used has been specified, the cut-off 

characteristic has also been determined. In certain types 

of filters it may be desirable to control directly the 

slope of the cut-off at high frequencies independent of 

the polynomial order. 

The slope of the cut-off character of the filter response 

is determined by the slope of the approximating polynomial 

as it passes through the upper end of the pass band. Using 

the coefficient method, this slope may be controlled by the 

variation of a combination of parameters. Among those 

parameters which may be used to control this slope are the 

coefficient of the highest power term of the polynomial 

and the polynomial zero nearest the end of the pass band. 

It is also possible to use the slope of the polynomial 

itself as the controlling parameter. 

The two polynomials given below were formed using the 

coefficient method to form an equi-ripple approximation 

to a constant over the range zero to one with the 
•to 

coefficient of x and the zero nearest one as the 



www.manaraa.com

106 

542x12 - 1934x10 + 2657%^ - 1727%^ + 5l4x^ - 56.4%^ +1.03 

806x12 _ 2723x10 + 3536x® - 2l45x^ + 599%^ - 62.3%^ + 1.02 

arbitrary parameters used to vary the slope at unity. The 

first polynomial has a slope at unity equal to 31.2 and 

the second a slope of 138.8. By proper selection of the 

parameter values a variety of polynomials was formed having 

slopes lying between these two limits. For comparison 

purposes the twelfth order Chebyshev Polynomial has a slope 

of 144 at unity. 

Other response characteristics may be controlled by 

proper definition of the arbitrary parameters. The curves 

of Figure 13 illustrate the control of network d.c. behavior 

possible using the band width factor as the controlling 

variable. Figure 18 illustrates d.c. behavior controlled 

by variation of the constant term of the polynomial when 

used as an arbitrary parameter. Combinations of these and 

other parameters may be used to control other response 

characteristics. 

B. Replacement Networks 

It is possible to use the coefficient method to form 

simple lossless ladder networks which are approximations to 

more complex networks over a specified frequency range. 

In some cases this simple network may be used as a replace­

ment for the original network. There are several possible 
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advantages to be gained by this replacement. In general 

the ladder will have fewer elements than the original 

network and will contain only passive elements, whereas 

the original may contain several active elements. Using 

a ladder to replace a network such as a lattice permits 

the use of a common ground connection between input and 

output. 

This replacement network may be developed using the 

coefficient method to approximate a function which is the 

inverse of the original transfer function. If the original 

function T(s) is represented as N(s)/D(s) the replacement 

network will have a transfer function which may be 

represented as l/p(s). in this form P(s) is a polynomial 

approximation to D(s)/n(s) over a specified range of s. 

The range of approximation must be limited to exclude 

zeros of the original transfer function. 

The data necessary for forming the polynomial approxi­

mation may be obtained in one of two ways. The first of 

these involves using the laboratory or analysis data of 

the frequency response of the original network. These 

data must then be squared and inverted to be in the proper 

form for the approximation technique. The alternate 

procedure involves the use of the transfer function of 

the original network. In this process T(s) is multiplied 

by T{-s) and the product evaluated over the range of s 
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needed for the approximation. 

Figure 24a is the schematic diagram of a lattice network 

which has the transfer function given below. The coefficient 

Eg .5 (s^ + 2s - 8) 

s2 + 4s + 5 

method was used to develop a polynomial approximation over 

the range of frequency from 0.1 to 1.0 and from that poly­

nomial the ladder networks having the form of Figure 24b 

were formed. Figure 25 shows the frequency responses of 

the three networks. The solid line of Figure 25 is the 

response of the lattice network as determined using digital 

computer analysis. The circles represent the response data 

of the network formed using the computer determined 

response data to develop the approximation polynomial. 

The crosses represent the response data of a ladder formed 

using the transfer function of the lattice in the approxi­

mation process. The ladder component values for the two 

cases are given in Table 5. The component values given in 

this table and those for the lattice network have been 

scaled for the frequency range zero to one and a one ohm 

load resistor. 

C. Characteristic Matching 

Many transducers and other signal sources have 

frequency-response characteristics which are dependent 
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Table 5. La.dder component values 

Component 
Response-

derived ladder 
Function-

derived ladder 

Ll 920.0 213.0 

Cl 0.0056 0.021 

46.0 22.7 

C2 0.108 0.184 

^3 4.85 4.01 

^3 0.344 0.539 

L4 3.46 1.50 

C4 0.642 0.717 

^5 1.42 1.03  

C5 0.680 0.405 

upon the nature of the device and may not be changed. The 

system In which these devices are used may require other 

overall frequency characteristics. To accomplish this a 

filter network must be designed to match the actual 

device characteristic to the desired response of the system. 

Therefore the filter network must have a response char­

acteristic which is BOJiie eomblnation of these two char­

acteristics. This combination may be a complex function 

of frequency wh i ch is not easily expressed in rational 

form. Usinp; the coefficient method this combined response 

function me y be approximated by a polynomial even If the 



www.manaraa.com

112 

function is not a rational form. 

One example of the practical application of the co­

efficient method to the problem of response characteristic 

matching is the design of an acoustic transducer similar 

to that described in Section III. In this case it was 

necessary that the overall system response be an equl-

ripple approximation to a constant even though the device 

response was a three decibel per octave loss with Increasing 

frequency. This required that the transducer have a 

response which Increased three decibels per octave with 

increasing frequency. The final response function selected 

involved a frequency to the fourth power term as the 

numerator and a polynomial approximation to frequency to 

the fifth power as the denominator. The coefficient method 

was used to form an equl-ripple fourteenth order polynomial 

approximation to x^ over the range of x from 0.1 to 1.0 to 

be used as the demoninator. This transducer is still in 

the design stage. 

D. Inter-component Constraints 

One of the motivating purposes in the development of 

the approximation methods of this thesis was to permit 

inter-component constraints to be considered in problems 

of network synthesis. This application of the methods is 

fully Illustrated by the design outlined in Section III. 

This particular design uses the extremum method, but the 
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coefficient method could be used alone. 

E. Additional Applications 

The examples of practical applications of the approxi­

mation methods of this thesis described above are typical of 

those applications which take advantage of the unique 

properties of these methods. These methods also may be 

used in any of the filter design problems which are now 

solved using conventional techniques. 

Although the methods of approximation developed were 

specifically designed for use in network synthesis projects, 

they are general in nature and should be applicable to any 

problem requiring polynomials which approximate a given 

function. 
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VII. SUMMARY AND CONCLUSIONS 

Two methods of forming m-parameter families of approxi­

mating polynomials have been developed and illustrated in 

this thesis. The first of these, the extremum method, is 

a special purpose method for forming families of poly­

nomials which approximate a constant in an equi-ripple 

sense over a finite interval. The second method, the 

coefficient method, is applicable to a wide range of 

approximation problems. One version of this method forms 

polynomial approximations to explicit mathematical functions 

within some variable limits over a prescribed interval. 

Another version develops polynomials which fit within a 

pair of arbitrary limiting functions. 

A. Basic Algorithm 

Although the methods developed in this thesis are dif­

ferent, they do have several basic steps in common. It 

is possible to derive a general algorithm from these common 

steps which may be applied to other approximation tech­

niques. The basic steps needed in all methods of this 

nature are the formation and solution of a system of 

equations in a set of polynomial characteristics, the 

application of a second set of conditions to be satisfied 

by the polynomial, the formation and testing of a trial 

polynomial and the determination of an improved set of 
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estimates for use In the next cycle of the process. 

1. Equation system 

The first step In the algorithm requires the formation 

and solution of a set of equations. The unknowns In this 

system of equations are a set of basic polynomial char­

acteristics. The extremum method used the extrema of the 

polynomial as the unknowns. The polynomial characteristics 

used in the coefficient method were its coefficients. 

Another possibility would be a system of equations using 

the zeros of the polynomial as the unknowns. The equation 

defining the end conditions and the arbitrary parameters 

of the polynomial family are included within this system 

of equations. 

The coefficients of this system of equations are derived 

from a set of initial estimates. In the extremum method 

this set was estimates of the extrema themselves. In the 

coefficient method, a set of approach point estimates was 

used to determine the coefficients of the system of 

equations. There are many such sets which could be used, 

but for best results the set chosen should have some 

significance in subsequent calculations. 

A trial polynomial is formed from the results of the 

solution of this set of equations. This polynomial will be 

used in the following steps of the algorithm. 
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2. Additional conditions 

Once a trial polynomial has been formed, it must be 

tested to determine if it satisfies a set of constraints. 

In general, these constraints, which are in addition to 

the constraints of the system of equations specified in 

the first step, are related to the limits within which the 

polynomial must lie. 

The additional constraint imposed by the extremum method 

was that the magnitude of the polynomial at the extremum 

must equal the ripple magnitude. The coefficient method 

required the tangents of the polynomial and the limiting 

function to be equal at the points for which the values of 

the two functions are equal, 

3. Test for solution 

In any Iterative process there must be some method of 

testing the trial solution. Once this test is satisfied 

the trial solution is defined as a final solution. If the 

trial polynomial does not satisfy the conditions of the 

test, the iterative process must continue. In this 

algorithm, these tests usually will be performed on the 

trial polynomial. 

The test used in the extremum method compared the 

actual values of the trial polynomial at its extrema with 

the values of the limiting functions at these points. The 

value used as a measure of the error involved was the sum 
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of the squares of the differences in these values. In 

the coefficient method, the test Involved finding those 

points for which the tangent of the polynomial equalled 

the tangents of the limiting functions. These points were 

compared with the predicted points and the sum of the 

squares of their differences was used as a measure of 

convergence. 

In each of the methods of this thesis, the points used 

for this test were related to the points used as initial 

estimates in the first step. Although this relationship is 

not a necessity, it is a commonly used practice and permits 

a new set of estimates to be evaluated easily. 

4, Estimate update 

Whenever the test of the trial polynomial indicated that 

no solution has been reached a new set of estimates must be 

supplied and the cycle repeated, xher-e ar-e nany possible 

means of developing a new set of estimates. The final 

choice of the method used will depend to a large extent on 

the definition of the estimates themselves and on the 

details of the computations in the earlier steps of the 

algorithm. 

In the extremum method, the extrema are used as esti­

mates even though they are never computed within the 

algorithm. Therefore, a system of nonlinear equations 

must be solved to update these estimates. It is this 
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process which causes much of the difficulty In obtaining 

solutions by the extremum method. 

The points of approach are used as estimates in each 

cycle in the coefficient method. The test procedure Involves 

the estimated points of approach and the actual points of 

equal tangents. Having this set of equal tangent points 

available, the Improved estimates may be derived by linear 

interpolation using this set and the previous estimates. 

The two methods of updating the estimates mentioned 

above illustrate the range of methods which can be used. 

In any particular program the updating method must be 

determined by the details of the program itself. 

The four steps described above are not Intended as a 

complete description of an algorithm to produce polynomials 

which approximate some function. The purpose of the 

description is to illustrate the similarity of the two 

methods developed in this thesis and to show that variations 

on the methods of this thesis can be developed. The basic 

steps of such algorithms will be those described here, 

although the details may be quite different. 

B, Limitations on the Methods 

Except in the case of the extremum method which was 

designed as a special purpose method to solve one problem, 

there appear to be no theoretical limitations on the 

application of the methods of this thesis. Experience 
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has Indicated the major source of difficulty to be the 

design of the computer programs needed to accomplish the 

computations. With appropriate safeguards built into these 

programs, there is no reason to limit the use of the methods. 

However, this safeguard method soon becomes impractical. It 

appears much more efficient to detect such errors by 

examination of the polynomial plots. In this way a wide 

variety of errors may be detected and corrected better than 

by an array of limited testing routines. 

One major solution to possible troubles appears to be 

the correct selection of the value for the arbitrary param­

eter. In all examples tested, the methods have performed 

satisfactorily once a proper choice of this value has been 

made. These choices are dictated by the behavior of the 

polynomial itself and may be determined by evaluation of 

the curves as the polynomials are plotted. 

C. Future Investigations 

There are several areas which may prove of Interest for 

future investigation. One of the most promising of these 

is the development of a noniteratlve method of accomplishing 

the approximation process. Another promising area is the 

application of the methods of this thesis to problems of 

network optimization. 
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1. Explicit method 

Several attempts were made to derive an explicit expres­

sion for the approximation. In each case the computations 

involved were too complicated to permit direct solution. 

When the assumptions necessary to permit solution were 

included, the results were too restrictive to be of general 

use. Because of the need to produce a network meeting 

certain specifications (Section III), these attempts were 

not pursued in more detail, but were abandoned in favor of 

the numericc' 1 methods of this thesis. 

The attempts made (Appendix, Sections A, B) could serve as 

starting points for any future attempts to derive an 

explicit approximation expression. This explicit form 

should Include the desirable features of the iterative 

forms of this thesis and, in addition, could have the 

advantage of reduced computation time which is character­

istic of many explicit expressions. 

2. Network optimization 

The optimization technique described by ishizakl and 

Watanabe (9) suggests that the approximation procedures 

of this thesis can be adapted for use in a similar tech­

nique. The major differences between the optimization 

procedure and the approximation procedure are the form of 

the final solution and application of the output. 

The optimization method referenced above is not as 
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general as a method based on the techniques of this thesis 

could be. The present method is limited to Chebyshev 

sense optimization. A method based on this thesis could 

be used for a wide variety of optimization schemes. 

3. Other possible areas 

The two suggestions for possible future investigation 

given above are not the only areas available, They are 

suggested because they represent extensions of the methods 

derived. Other possible areas of investigation could 

produce improvements within the framework of the present 

methods. 

Desirable improvements include reprogrammlng for 

improved precision or reduced computation time. Other 

possible improvements are additional polynomial testing 

and special purpose polynomial factoring subroutine design. 

Other fruitful areas for addlbional Investigation may 

be found in the field of applications. At present, the 

method has been applied only to the network design problems, 

but other applications of equal interest may be found. 

D. Concluding Remarks 

The two methods of forming polynomial families which 

approximate some desired function or curve were developed 

to allow more variety in the networks designed to meet a 

desired frequency response. With a family of networks 
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from which to choose, the choice of a final network may be 

based upon considerations other than frequency response. 

In design projects where constraints other than frequency 

response characteristics were Important, the application of 

the methods of this thesis have produced physically 

realizable devices meeting all constraints; whereas, the 

existing approximation techniques did not. 

Another degree of flexibility allowed when applying the 

methods developed in this thesis Is the ability to approxi­

mate a wider variety of response functions. Using the 

coefficient method, the choice of functions to be approxi­

mated is not limited to simple rational forms, but any 

finite, single-valued function or curve may be approximated 

in a form suitable for use in network synthesis problems. 

Thus, the methods of this thesis widen the scope of 

network synthesis methods by permitting the formation of 

a variety of networks meeting the same specifications and 

by providing a wider variety of functions which may be 

used in response specifications. 
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IX. APPENDIX 

A. Analytic Method 

This appendix outlines one unsuccessful attempt to 

produce an explicit form for the approximation polynomials 

described in the body of this thesis. Solution of the 

resultant equations in this development required restric­

tions which so limited the choice of parameter values as to 

make the solution impractical. 

The analytic method of developing the extremum method 

is based on the following hypotheses; 

Polynomial, P^tx), is even. 

M = max|p^(x)| for finite x. 

Interval of approximation = [-1,1]. 

M = jp^I at n-1 points in the interval and nowhere else 

along the imaginary axis. 

No finite extrema of exist outside the interval of 

approximation. 

From these hypotheses the following root (or zero) locations 

may be deduced. 

Roots of (M - Pn) = 0 
end points 2 simple real roots 
1/2(n-4) double real zeros 
2 simple complex conjugate zeros 

Roots of (M 4- P ) = 0 
1/2(n-2) double real roots 
2 simple complex conjugate roots 

2 2 
The conjugate simple roots will appear as factors (XQ + x ) 
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In P^', (M - P^), and (M + P^). Other factors of these 

terms Include : 

P^' Includes + x^) 

(M - P^) includes (l - x^) and + x^) 

(M + P^) includes (x^^ + x^) 

Since the zeros of P^' occur at the extrema and the complex 

2 ? 2 2 
roots, the zeros of (P^') /(x^ + x ) are real. Also since 

(l - x^)(P^')^ contains the same factors as (M^ - P^^), 

p P 2 2 
factoring (P^^') /(x-j^ + x ) shows it to have the same 

factors as (M - Pn)(M + P^)/(l - x^jfxg^ + + x^), 

and all zeros occur at the extrema of P^. 

If P^(x) is denoted by y, the following equations can 

be written. The factor, n^, is included to keep the co­

efficient of the highest power of x equal to one. 

2 .-2 n^(M^ - y^)(x^^^ + x2)2 
( ̂n ' ) - = 

(1 - x^)(x2 + x2)(xg2 + x^) 

= n(x^2 + x^)[ 
-y" 

(1 - x2)(xp2 4- X ){xo^ + x^) 
,1/2  

dy n(x^2 + x^)dx 

(M^ - y^)V2 [(1 - x^)(x2^ + x^)(x2^ + x^)]V2 
(22) 

Integrating the left-hand side of Equation 22 gives 
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(M^ - y^)V2 
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= - arc cos (|) (23) 

Defining as shown in Equation 24, substituting 

into Equation 23 and rearranging terms gives Equation 25. 

f 
n 

r -(xi^ + x^)dx 
1 (24) 

[(1 - x^)(x2^ + x^)(x2^ + x2)]V2 

y = M cos(nf^) (25) 

If z is defined as (x^^ + x^), x becomes (z = 

and dx becomes dz/2(z - x^^)^/2, Defining n, Bg, and 

as shown below and substituting them into the equation 

for f^ gives Equation 26. The denominator of Equation 26 

is multiplied through, thus producing the polynomial in jj 

of Equation 27.  

u = 

1 + X22 



www.manaraa.com

127 

f 
n " - ? J (26) 

[-(l - u)(B^ - u)(B2 - M)(B2 -

(1 - u)(B]^ - u)(B2 - u)(B2 - |i) = B1B2B3 

- u(B-j^B2B2 + B^Bg + B2B3 •}- B^B^ 

+ u^(B^ +• B2 + Bg + B^B2 + ®2®3 ®3®l) 

- M^(l + B^ + B2 + Bg) + |i (27) 

One method of handling the integration involved in this 

definition of f^ is to form an elementary integral. To put 

in Equation 27 must be set equal to zero. 

^1^2^3 "J" 5^62 4" BgB^ + B^B-j^ = 0 

Bi + Bg + B^ = - 1 

Since this is a set of two equations in three unknowns, no 

unique solution can be found. One possible trial solution 

uses large values of which makes B^ = 0, B2 = -1, and 

Bg = -1. With these values of the B's substituted into 

Equation 26, the reduced expression for f^ becomes that 

shown in Equation 28 which has the indeterminant solution 

given. Therefore, this assumed solution must be considered 

invalid. 

Equation 26 into such a form, the coefficients of u and M 
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f = .1 r ÉiA ^ 
" 1 .1 [-(1 - 2U2 + u4)]l/2 (28) 

i arc 003 g " )] 

As another possible solution, the coefficients for u 

and are rearranged in the form shown below and set equal 

to zero. 

Bi(B2 + Bg) + 6262(62 +1) =0 

(6^ + 1) + (62 + 63) = 0 

Thus 

Bg + = -(B^ + 1) 

and 

-6^(62 + 1) + +1) =0 

Since, by definition, ; which is always 

positive, 

®1 ~ BgBg 

Once again, there are more unknowns than equations so 

an assumed solution of either Bg = - land Bg = - 6% or 

~ • ®1 Bg = -1 is substituted into Equation 26 

and the equation solved. 
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fn = - r r ili£] 
' [-(^4 + (.1 _ + B^^)]V2 

_ 1 , + 1 _ 2u^ 
- ^ arc Sin [_i ] + cn 

Bi^ - 1 

1 Bi2 + 1 _ 2^2 
2j- arc cos [_± ] 

Bi^ - 1 

Substituting this solution into the equation for y, 

produces the transcendental equation. Equation 29. This 

equation may be transformed into a polynomial by application 

of the trigonometric identity, cos(n(arc cos x)) = 

1/2 [(x +(x2 - i)V2)'^ + (x - (x^ - 1)1/2)^], The poly-

2 
nomial thus produced is a polynomial in u having Bj as a 

parameter. This polynomial is shown as Equation 30. 

+ 1 _ 2^2 
y = M cos[- arc cos(—— )] (29) 

- 1 

M Bi^ + 1 - 2U2 H- 2(ul - u^(Bi^ + l)+ 
y = 2 [ ]"/4 

Bj^ - 1 

M R^l^ + 1 - 2U2 - 2(U4 - -r l)+ B^^) 
+ 2 t ^ 

(30) 

When the original definitions for u and Bj are sub­

stituted into this polynomial. Equation 31 is the result. 
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For y to be an even polynomial, the coemcienta Tor the 

y = I ^ (31) 
1 + 1 + 

where 

T = 2(1 - Bi)x^ + ̂ B^x^ - (1 + B^) 

U = 4(1 - Bi)2x® + l6Bi(l - Bi)x6 + 4(5B^^ - l)x^ 

- 8Bi(1+B]^)X^ 

x^ and x^ terms in U must be equal to zero. There are three 

2 
possible combinations which make the coefficient of x equal 

to zero: 

1. M = 0 (not allowed), 

2. B^ = 0 (possible), 

3. 1 + B^ = * (trivial solution). 

Therefore to satisfy the hypothesis that be an even 

polynomial, only one value of is possible. This 

violates the hypothesis requiring a variable parameter. 

Other similar assumptions were also tried but with like 

results. Each assumption forced a single choice of the 

arbitrary parameter. Other methods of approach may exist, 

but were not investigated thoroughly. 
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B. Second Order Equation Method 

A second unsuccessful attempt to find an explicit method 

of forming the type of approximation described in the thesis 

is described in this appendix. This method was abandoned 

because necessary approximations severely restricted the 

form of the final solution. 

This method makes use of the same hypotheses as the method 

of Appendix, Section A, and is identical to it up to and 

including Equation 24. In the method of this appendix, a 

second order differential equation in y is formed. Once 

formed an attempt is made to solve the equation for y. 

The second order differential equation is formed as 

shown below. Equations 24 and 25 are repeated for reference. 

In order to simplify writing the equations, a new function, 

g, is defined by Equation 

y = m COB n f^ 

r 
? p \ 

_ (X2 + x^) dx 

- (X]2 + x^) 
(32) g 

x^)(x2^ f x 2 \ f x _ 2  f x^)]^/2 

p 
y = M cos [n I gdx] 

V 

n 
y« = ngM sin [n _ gdx] 



www.manaraa.com

132 

y ' r 
— = nM 8In [n 
g 

gdx] 

[2li]' = - n^Mg cos [n j* gdx] 
•g 

y" - ̂  + n2g2y . 0 (33) 

The second order differential equation for y In terms 

of g (Equation 33) must now be solved. When the appropriate 

operations are performed on the function, g, Equation 33 

has the form specified in Equation 34 in which the co­

efficients are polynomials in x as defined below. 

Ay" + + Cy = 0 (34) 

A = (1 - X^)(x^^ + x^)(x2^ + x^)(x3^ + Xg) 

-B = x[2(l - x^)(x2^ + X^yfXg^ + x") 

- (1 - x2)(x^2 + + x^) 

- (1 - x2)(x^2 + x^){yi^ + x^) 

+ (x^Z + x-)(x2^ + x^)(x^- -f- x^)] 

C = n^(x^^ + x2)3 

This equation is now in the appropriate form to be 

solved using the Method of Probenius (6). For this method 
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the equation must be in the form specified by Equation 35» 

2 
% = R(x) ̂  ̂  p(x) = 0 (35) 

where 

g O 
R(x) = A = Rq + R^x + R2X + RgX^ + Rj^x + ... 

Rq - 1 

R ^  =  0  

Rg = _ 1 

*3 ^2 ^1 

R3 . 0 

R. = + 1 + — 

*2 %3^ xi^x^^ x^^xg^ xg^ X2^ xg^ 

R^ = 0 

«6 = 1 
? 2 P  2 ?  P c J  ? 2  

%1 %2 %3 %2 %3 ^13 %! X2 

Ry = 0 

- 1 
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2 . . ..3 . T, „4 p(x) = xB = Pq + P^x + p.^-x + P3XJ + P^x 

PQ = 0 

Pi = 0 

• 2  =  -f + 
xi'^ x^^ X2 

- 1 

= 0 

- 2 2 2 1 2 

'l"X2^ Xi^Xg^ 'A-̂  xgZ 

P5 = 0 

Pg = -

Py = 0 

P8 = 
- 1 

2 2 2 
^1 *2 3 

Q,(x) = x^C = Qq + Q^x + §2%^ + 

Q 0 

Qi 

Q. 

0 

0 

Z2Z2 
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^3 • 0 

% 
3n^ 

= 0 

Q6 = 
3n2 

2 2 
*2 *3 

*^7 

^8 
1 

X2^X2^X3^ 

After applying the Method of Probenlus (6), the solution 

for y has the form of Equation 36. When the appropriate 

substitutions are made the equation becomes that shown as 

Equation 37. 

y = X® y Aoc^ (36) 
k=0 

MY «  (1  + R^x + RgX + ...)(x(x - 1)AQX®"^ + (S + l)sAixB-l 

-r ( s  +  2) ( s  f  +  .. . )  f  ( P q  +  P ^ X  +  +  . . . )  

(SAQX®~^ +  (S  + l )Aj^x®~^ + (s + 2)A X ®  +  . . . )  

4- (Qq + Q^X + QgX + • . . ) (AQX  ̂̂  + A-Ĵ X + AgX + • • • ) 

(37) 
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Since y must be an even function of x, s cannot be equal to 

one. If s is set equal to zero, the odd subscripted A 

terms must be zero. This is already the case without need 

for the selection of X2 or x^. 

In order to obtain a recursion formula for the A's in 

the above equation, Equation 36 is substituted into 

Equation 34 resulting In Equation 38. 

2 
A(%) (r + B(x) g| (Z + c(x) T. A%%2k = 0 

(38) 

S = ^ 

5% = r 2k(2k -
dx"^ 

For the n^^ order polynomial specified by the hypothesis, 

the r-ecurslon formulae be coins those shcv;n below. There­

fore, for k to be (l/2n + 3), rg must be zero, since 

"n/2 cannot be zero due to the even polynomial hypothesis. 

Thus, for the value of k = (l/2n + 3), the value for r^ 

is given below. This value becomes zero for n = - 6 or 

- 2, neither of which satisfies the hypothesis. 

^n/2+l '"2^11/2-2 + ''3^n/2-3 = ° 

= '•A/a '"3^2-2 ' ° 
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\/2+3 " ^2^/2 ^3^n/2-l " ^ 

An/2+4 = rsAn/S = ^ 

4(2k - 3)^ - r? 
J» a ———————————————— 

Xl^X2^%3^(4k^ + 6k +2) 

An alternate possibility is to force the denominator 

term to approach infinity which may be done by either 

letting n become infinite, which is impractical, or letting 

one or more of the x's become infinite. If the latter 

choice is made, r^ = 0 for any n or k. Therefore, this 

method does not produce a polynomial satisfying the 

necessary specifications. 
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