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I. INTRODUCTION

In most electrical filter design, the major consideration
is the frequency response characteristic. The design problem
may be simplified to finding a physically realizable elec-
trical network which has a specified response over a given
frequency range. With the increased use of active elements,
even the requirement on physical realizabllity 1is being
relaxed to a large extent and now filters are being designed
which at one time would have been considered unrealizable
(1, 2, 3).

There is, however, another class of networks which are
becoming more common and which do not share the relaxed
physical realization criteria of the purely electrical
filters. These are the nonelectrical networks which include
mechanical or acoustic elements in either lumped or distrib-
uted form., Tnese nelUWOrks may re v £

A 1
resent a filter or 2

o

transducer, but they all contaln frequency sensitive
elements analogous teo electrical inductance and capacitance.
In general, these nonelectrical networks and some special
electrical networks may include within thelr physical
realizability conditions certain inter-component con-
straints (4),

These inter-component constraints may require special

treatment when the device 1s to be designed on the basis

of its lumped parameter electrical network. Since the



synthesis techniques for lumped electrical networks are
well developed, it 1s often desirable to‘express the
synthesis of more general forms in terms of this analog.
However, these synthesls techniques do not consider the
Inter-component constraints which may be present, so addi-
tional techniques may be required.

One purpose of the thesis 1s to develop approximation
techniques which will allow the standard methods of elec-
trical network synthesis to be applied to networks which
contain inter-component constraints. Thils purpose may be
expanded to include methods of approximation which will
permit a wider variety of networks, all of which have similar
frequency responses, to be synthesized, A second purpose for
this type of approximation method is to permit a wider range
of functions, irrational as well as rational, to be approxi-
mated in a form which makes them available as possible net-

work response characteristics,

A, Practical Design Problem
The development of approximation methods which would
allow electrical network synthesis techniques to be applied
to the design of nonelectrical networks with inter-
component constraints became necessary in the design of
a minlature acoustic transducer,
Because of the acoustic nature of the elements and the

small size of the transducer, several inter-component



constraints had to be placed on the network elements. Also,
Since the device was being designed for a speclalized
application, rigid specifications were placed on the fre-
quency response characteristics. The final configuration
of the acoustic device specified the topology of the
electrical analog network. Existing methods of approxi-
mation failed to produce networks which satisfied all of
the above conditions. Therefore, to satisfactorily complete
the transducer design, a new method of approximation had to
be developed. |

The design of the transducer discussed above and the
particular constraints on this design are fully discussed

in Section III of this theslis,

B. Proposed Solution

As a method of solving the problem of network synthesis

new method of approximating the desired response character-
istic. This new method 1is to produce a family of approxi-
mating functions all having similar response characteristics,
but differing in actual numerical values. In this way, a
family of networks could be formed, all with similar
responses, but with different element values, From this
family those networks satisfying the constraints could be

chosen.

Several fundamental decislions were made concerning the



form of the approximation technique. The approximating
function 18 to be an even polynomial and the Method of
Gewertz (5) will be included in the synthesis procedure.
Based on the work of Chebyshev in (6), it was decided to use
an equi-ripple approximastion to the function being approxi-
mated. In order to obtain a free parameter which could be
varied independently of the pass band frequency response

to gilve a family of networks, one of the pass band ripples
was sacrificed. Thus, the origlnal proposed solution was
to approximate the needed response characteristic with an
approximately Chebyshev polynomial with one pass band ripple
sacrificed to allow an independently variable parameter,
This proposal was later expanded to permlt more than one
ripple to be sacrificed allowing more than one variable to
be used,

Two approximation methods were developed based on this
proposal. The first of these, the extremum method, 1s
discussed in Section II. This method 1s limited 1in scope
allowing only a multi-parameter approximation of zero over
the frequency range from zero to one. This method proved
successful in the acoustic transducer design problem. The
second method, discussed in Sections IV, V, and VI, 1s the
coefficient method which is a general method for approxi-
mating any single-valued, finite function over a given

range. Thils more general method was developed from ideas



used in the work with the extremum method.

C. Comparison with Existing Methods

There are several approximation techniques whilch are
now being used in network design problems. The best known
of these are the methods of Chébyshev and Butterworth (3).
Both of these methods approximate the function to within
limits by a polynomial. However, once definite specifica-
tions are made, only one polynomial is available and no
variation within the method 1s possible.

Two other methods of interest are more recent than the
first two discussed. The approximation method developed by
N. B. Jones (7) makes use of the Chebyshev Polynomials and
by frequency scaling techniques permits one ripple locatlon
to be specified. In this way a number of polynomials may
be formed, all having approximately the same response as
the original Chebyshev Folynomial. Using this method only
small variations about the original mey be achieved. The
only parameter available is the ripple location. This
method is also limited to approximations of a constant.

The approximation method of major interest for compari-
son with the methods of this thesis is that of D. S,
Humpherys (8). This method allows any polynomial to be
approximated in an equli-ripple manner by a rational
function, .There exists the possibility of using one root

location of the rational function as a variable parameter



by sacrificing one pass band ripple. The method does allow
a closed form solution once a given set of condltilons is
met and requires only the solution of a set of llnear
equations. The major limitation on this method is the
requirement that the functlon to be approximated be
expressible as a polynomial.

Each of the existing methods fails to meet all the
requirements desired in the methods of this thesis, These
methods are to permit an approximation of any function or
curve to within limits of magnitude and over a range of
frequency. Furthermore, the approximation is to be
accomplished by a famlly of polynomials produced by
variation of one or more arbitrary parameters. The param-
eters are to be extra conditions which may be imposed as a
result of the sacrifice of an appropriate number of pass
band ripples.

A recent article by Ishizakl and Watanabe (9) describes
a technique for optimizing a network in order to approxi-
mate a Chebyshev type response. EXamination of the system
of equations used in this technique leads to the concluslon

that the approximation meithods described in this thesi

3

axr
=y

ta

4

be adaptable for use in network optimization as well as for

the function approximation purpose originally outlined.



II, THE EXTREMUM METHOD

This section and the one following describe the extremum
method of eapproximating a constant and illustrate its
application to the design of an acoustic transducer. The
concepts underlying the extremum method and its development
are discussed in this section. Section III includes detalls
of the acoustic transducer design problem and 1ts solution
using the extremum method.

In order to simplify the notatlon to be used, the term
"extremum" will be used to signify that value of x at which
the polynomial, P(x) has a local minimum or maximum. The
polynomial, P(x) = X% + 1, is a minimum at X = O and thus
zero 1s an extremum of this polynomial. The value of P(x)

at the extremum will be referred to as the value at the

extremum. In the example polynomial the value at the

extremum is one,

A, Fundamental Concepts
The fundamental concepts underlying the extremum method
are similar to those upon which the Chebyshev Polynomials
are based., These polynomials are commonly used {o approxi-
mate a constant in an equi-ripple manner over a finite
range of the independent variable. Figure 1 shows a
typical zero pattern of a Chebyshev Polynomial and its

behavior along the real axis of the x-plane, These polyno-
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mials have either even or odd symmetry about the vertical
axis,

In order to simplify the equations and the computer
programming & change in the independent variable has been
made. As used in network synthesis the polynomials would be
a function of complex frequency, S, and their zeros would
lie on the imaginary axis of the s-plane. Throughout this
thesis the new variable, x = =-js, is used to force the zeros

of P(x) to lie on the real axis.

1. Basic Chebyshev speclfications

The example Chebyshev Polynomial, characteristics of
which are plotted in Figure 1, is an eighth order polynomial
of the form given in Equation 1. 1In this form, there are
five unknowns, the five a4 coefficients, which must be

determined by specifying five conditions on the polynomial.

a8x8 + a6x6 + a4x4 + a2x2 +ag = P(x) (1)
In the case of the Chebyshev Polynomials, the five conditions
are the two end conditions, P(0) = 1 and P(1) = 1, and
three extrema. The conditions at the extrema are deter-
mined by the equi-ripple requirement and may be specified
by requiring that the values at the extrema be Y1, The
end point condition at zero may be considered a special
case of the extrema conditions for cven polynomials.

These end point and extrema conditions, when applled to
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a general even polynomial of the form given in Equation 2

result in an equi-ripple approximation to zero over the

P(x) = g aeix21 (2)
1=0

range from x = 0 to x = 1. This approximating polynomlal
will have n zeros lying on the real x-axis between zero
and one and n extrema including 2zero in this same range.
This general even polynomial will have n + 1 unknown
coefficients. These unknown coefficients can be determined
by specifying conditions on the n extrema and the end point
at Xx = 1. These conditions determine the Chebyshev

Polynomial of order 2n.

2, Effect of relaxing condition at zero

A set of modified polynomials may be formed from the
Chebyshev Polynomials by allowing the condition at zero to
be other than P(0) = 1. Figure 2 illustrates the effects
of allowing P(0O) to be less than one but greater than zero,
to be zero, and to be less than zero. 1In each case the
polynomial Zeros are shifted from the zeros of the original
resented hy the dotted cireles. As
P(0) decreases toward zero, the real axis zeros are forced
onto the imaginary axis. As P(0) becomes more negative a
pair of extrema also become lmaginary and both the real
axis extrema and zeros between x = O and x = 1 are reduced

in number by one.
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A, PlO) LESS THAN | BUT GREATER THAN ZERO

C. P(O) LESS THAN ~-I. TWO ZEROS ON IMAGINARY AXIS

FIGURE 2. REAL AXI8 BEHAVIOR AND ZEROS OF MODIFIED EIGHTH
ORDER POLYNOMIALS
ORIGINAL ZEROS SHOWMN AS DOTTED CIRCLES
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3. Imaginary axis extrema

A logical extension of the results of decreasing the
value of P(0) 1is to allow this value to become equal to -1,
In this case, as shown in Figure 3a, the behavior of this
modified polynomial resembles that of the Chebyshev
Polynomial of order 2(n - 1) even though the actual poly-
nomial is of order 2n. The polynomial is still an equil-
ripple approximation to zero but with one fewer pass band
ripples than the original Chebyshev approximation. Also,
the slope of the curve as it passes through the end point
has been reduced due to the shift toward the origin of the
zero closest to one, the slope of the curve as 1t passes
through the end point has been reduced.

Because the real axis behavior of this modified equil-
ripple approximating polynomial is similar to that of the
next even order Chebyshev Polynomial of lower order, one
fewer condition must be specified to preserve this
character. Since n + 1 conditions are still needed to
specify the n + 1 coefficients of the polynomials and only
n are needed to specify the equi-ripple approximation to
n, there 18 one condition which may be
specified arbitrarily. This extra condition allows the
introduction of an arbitrary parameter which may be
selected independently of the desired frequency response

requirenents and permits a family of networks, all having
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P(X)

A. ONE PAIR OF COMPLEX ZERO8, EXTREMUM X| ARBITRARY

PX)

B. TWO PAIRS OF COMPLEX ZEROS, EXTREMA X.,Xz ARBITRARY

FIGURE 3. REAL AXIS SERHAVIOR
POLYROMIALS WITH EQ
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i
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the same frequency response character, to be formed,

This analysis may be extended to lnclude more than one
arbitrary parameter if more than one pass band ripple 1is
sacrificed. This possibility is 1llustrated in Figure 3D
in which the pass band behavior of the polynomial having
two pass band ripples sacrificed is shown., As 1n Figure
3a, this represents an eighth order polynomlal designed to
be an equi-ripple approximatlion to 2ero. Since there are
now four 2zeros located symmetrically with respect to the
origin within the x-plane, no general statement may be made
concerning the direction of shift of the remaining real axis
zeros and the change of slope at x = 1,

The extremum method 1s based on the analysis above.

The conditions imposed upon the polynomials to be
developed by this method are essentially those described
for the Chebyshev Polynomials with the exception that one
or more extrema are forced off the real axis, These
complex extrema are used as the arbitrary parameters in

the formation of a family of polynomials,

Ton 2 4 2 1T
D, TRRY roctheses

| £
1L 1Yy MV VL

The development of the extremum method was based on
the fact that the polynomials developed by this method

must be even order and be equi-ripple approximations to a

constant. One or more extrema pairs of these polynomlals



15

must be complex and thelr location within the x-plane

may be arbitrary.

1. Even polynomials

The polynomials being considered throughout this thesis
are even polynomials of the form given in Equation 2. 1In
this equation, x is related to the complex frequency, s,
commonly used in network synthesls by the relationship,

X = - js. The polynomial was chosen to be even since the
synthesis procedure uses the Method of Gewertz as mentioned

in the Introduction.

2. Extrema locations

An additional hypothesis concerns the location of the
extrema of the polynomials. In order to ensure that there
will be no significant frequency components passed by the
network outside the specific pasSs band, there must be no
real axis extrema of P(x) outside the specified range of
approximation. EXtrema may exist off the real axis

anywhere within the complex x-plane,

3. Network conditions

Several conditions are, of course, specified by the
network itself, both in terms of its physical realizability

and of its inter-component constraints. The realizability
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constraint is, for most practical purposes, relieved by
the synthesis procedure to be used and thus is not
included as a factor in the approximation technique.

One purpose behind the desire for a family of poly-
nomials 1s the ability to choose one particular poly-
nomial from the family on the baslis of satisfying the
constraints, In this way the constraints may be satisfied
without specifically including them 1n the approximation
procedure. For this reason, none of the many possible
constraints are considered in the development of the
approximation techniques although, as will be pointed out
in a later section, some constraints can be considered

when the arbitrary parameters are defined.

C. Description of the Extremum Method

The purpose of the extremum method of approximation
is to develop a multi-parameter family of polynomials
which approximate a constant over a given range of X,
These polynomials are essentially varilations of the
usual Chebyshev polynomials with the X-plane root
locatlons changed as shown in Figure 3. The notation

of Figure 3 will be used throughout this thesis.

1. EXtrema
Since the extremum method 1is primarily designed for

equi-ripple approximations, the maxima of P(x) will
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have the value +1and the minima the value (- 1). For
an m-parameter family x; through x, are the arbitrary

extrema and Xmtl through X1 the extrema along the real

axis. These extrema define Equation 3.

P(Xl) = Kl P' (xl) = 0
P(Xm) = K-m P'(Xm) = 0

P(xpe1) = T2 Pr(x,0) = 0
P(xy.y) = T1 P'(x, 1) = O

2. End condltions

In addition to the extrema conditions described above,
two end conditions are required before all unknown
coefficients are completely specified. These end condi-
tions are P(0) = ¥ 1 and P(1) = ¥ 1. Usually the sign of
the end condition for X = 1 is specified and the sign of
P(0) 1s determined by the number of ripples in the pass
band. PFigure 4 illustrates the interrelationship between

the number of pass band ripples and the end point signs.

Since the number of pass band ripples for a Chebyshev
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PLX)

— \ L

A. EVEN NUMBER OF RIPPLES, Pi1O)s~=1, P{l)s}

/
-
N B N V

B. ODD NUMBER OF RIPPLES, P(0)s1, P(l)=|

FIGURE 4. ILLUSTRATION OF RELATIONSHI®P BETWEEN END POINT
CONDITIONS AND NUNBER OF RIPPLES
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Polynomial of order 2n is n and the number of arbitrary
parameters is m, the end polnt signs are related in a
manner depending upon whether n-m is even or odd. 1In
Figure 4a, the number of pass band ripples, n-m, is even
and the end points have opposite signs. If the number of
pass band ripples is odd, as in Figure 4b, the end points
have the same sign. Therefore, if one end condition is

specified, the other is determined by Equation 4.

P(0) = (-1)"M=lp(1) (4)

3. Normallzation

The preceding discussion has dealt with polynomials
which are approximations to zero with a unit ripple
magnitude over the range of x from 2ero to one. Because
of scaling techniques, no generality is lost by this
g2 of X over whicn the aporoxXima-
tion is valid may be extended by frequency scaling.

For network synthesis, the polynomials will normally

be used in the form given in Equation 5. 1In this form the

O

~~
Y]
N’
|
b=
-+
H
‘g
—_—~

~—

(5)

Y
.

ripple magnitude may be controlled by varying the ripple
factor, r, and the constant being approximated can be

controlled by magnitude scaling.
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D. Development of the Extremum Method

Several methods were used in attempts to develop an
explicit form for the approximation technique. Two
unsuccessful attempts are outlined in Appendices A and B.
Both of these methods were abandoned when 1t was found
that computational difficulties forced a series of
assumptions. These assumptions restricted the form of the
final solution to such an extent that no practical poly-
nomial families could be formed. It may be possible that
additional investigation glong the lines of the methods out-
lined in the Appendices might result in some workable
solutions.

The method which proved practical in terms of producing
usable polynomials 1s a numerical method involving the 4
solution of a system of nonlinear equations. The basic
steps of the method include the steps outlined here and
discussed in detall in the following sections,

1. Formation of extrema estimates

2, Formation of derivative polynomial, P'(x)

3. Integration of derivative polynomial P'(x) to
obtain P(x)

. Evaluation of a constant of integration, L

. Evaluation of multiplicative constant, k

N
5
6. Evaluation of P(x) at estimated extrema
7. Determination of extrema error

8

. Improvement of extrema estimates
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1. Extrema estimates

The input to each cycle of computations 1s a set of
extrema estimates. The input matrix X is defined by Equation
6. This is the form for an m-parameter family of poly-
nomials., The first m extrema palrs are used as the arbltrary

parameters and are constants through the computational cycles
- -
Xm+l
X

[X]

m+2 (6)

for the particular polynomial being formed.

Initially, In the iterative process, these estimates
must be supplied externally. Once into the lterative
process, the estimates are supplied for each cycle by the
previous cycle untll the estimates are refined sufficiently

to be considered a solution,

2, Formation of the derivative

The derivative polynomial, P'(x), is formed using
Equation 7. In this equation all m arbitrary parameter
pairs have been defined along the imaginary axis. If an

Prx) = e 4202 4 x0) s (2 4 R)E )

cee (X% - %2 ) (7)
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off-axis extrema combination is preferred, the term

2

(xu + ax“ + b) 1is substituted for two of the (x2 + xe)

i
terms. The constants a and b define the complex extrema.
The factor x is a result of the even X nature of the final
polynomial. k 1s a constant to be defined later.

Equation 7 is then multiplied out to obtain the poly-
nomial form of Equation 8. 1In this equation and the sub-

sequent ones, the coefficients, Ci’ are nonlinear functions

of the arbitrary real extrema, Xy through Xns and the

X

P'(x) = k(C 2n‘1+c3x2“‘3

. + .eu + Gy X) (8)

extrema estimates, X through x,_-.

m+l

3. Integration

To obtain P(x), Equation 8 is integrated. The form of

P(x) which 1s the result of this operation 1s shown in

Equation G In this eguation, k is a multiplicative
Cy 2n Cg 2n-2 Ch 2
P(x) = K ) X X ese +—2~X + L
L™n-1 n-=3

constant which 1s used to satisfy the requirements for
P(1). L is a constant of integration which is used to

satisfy the requirements for P(0).
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L. Constant of integration

In this case the constant of integration, L, can be
evaluated by inspection of Equation 9 and found to be
equal to P(0). For the general case, Equation 4 can be

used to calculate this value for any problem.

5. Multiplicative constant

It 18 necessary to include a multiplicative constant, k,
in the expression for P(x). Since k is not dependent upon
either the extrema estimates or the arbitrary extrema, it
may be chosen to satisfy some other polynomial property.

For purposes of this development, the value of k is
chosen to satisfy the end condition given in Equation 4,
For approximations with an even number of pass band ripples
(t.e., P(0) = -P(1)) the value of k can be found using

Equation 10, The sign is chosen to be the same as that

C C C
ko= Fe/zi+ 2 Foen ) (10)
n-1 n-3

of P(1). For approximations with an odd number of pass
band ripples (i.e., P(0) = P(1)), any value of k will
satis{y the end conditicn. Therefore the value of k

determined by using Equation 10 can be used for both

cases,
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6. Polynomial evaluation

The polynomial, in its final

form given in EQuation 9,

1s evaluated at the estimated extrema producing a test

matrix Y defined in Equation 11.

-}(xm+l$
P(xm+2)
(Y] .

determine whether the polynomial

This vector is used to

(11)

produced is a solution or

whether another computational cycle must be begun.

7. Test for error

From the discussion in Section II, C, 1, it 1s apparent

that once the approximating polynomial has been formed, Y

“ = Iy (I )
should ceonsist only of ones with

ideal matrix, Yl’ is compared to

obtain a measure of the error in

the actual Y matrix to

the iterative process

producing the approximating polynomial. One possible

measure of the error is given in Equation 12. This

particular method of defining the error is a measure of

the variations of the extrema magnitudes from the limits.

n-1
Error = z [p(xy) - sgn
1=m+l

2

(P(x4))] (12)
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Once the error measure 1s less than some specified maximum,

the polynomial is defined as a solution,

8. Estimate improvement

If the error measure, as computed by Equatlon 12, is
above the maximum allowable error, the estimates of the
extrema locations must be improved and the cycle repeated.
The output matrix Y, as well as the original input, X,
are used in the limprovement process,

An improved set of estimates 1s obtained by solving
Equation 13 for the values of x which do satisfy the

extrema conditions,
(Y] - [y,] = 0 (13)

Since the coefficlents of P(xm+k) are nonlinear functions
of x; through x,_;, Equation 13 is a set of (n-m-1) non-
linear equations in the unknown exXtrema,

There are several methods of solving systems of non-
linear eQuations which may be used to produce an improved
set of estimates (6, 10). Among the better known are the
methods of Newton-Raphson, Wegstein, and Muller (10). 1In
practice it was found that this part of the computation
cycle gave the most trouble since most commonly used
methods of solving nonlinear systems require accurate

initiel estimates for convergence,
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E. Practical Considerations

As mentioned above, one of the major difficulties is
the tendency of the methods of Improving the extrems
estimates to diverge unless an accurate set of inltial
estimates is supplied, In many cases, such 1lnitial esti-
mates may be obtained using Chebyshev polynomials,

The initial estimates for a polynomial of order 2n
having m arbitrary parameters may be obtained by using as
estimates the extrema of the Chebyshev Polynomial of order
{2n-2m). If the values of the m arbitrary parameters are
sufficiently large, the extrema of the lower order
Chebyshev polynomial are close enough to the approximation
polynomial extrema to ensure convergence to a solutilon.
Once the extrema of a first polynomial are known, they may
be used as the initial extrema estimates for a new poly-
nomial having slightly different arbitrary parameters,

An example of the results of this procedure 1s illus-
trated by the curves of Figure 5. The polynomials being
developed were 12th order polynomials with one arbltrary
parameter, This figure shows a family of curves
representing the changes in the four real extrema as the
magnitude of the imaginary axis extrema 1is varied. The
initial magnitude of the parameter Xq was set to ten and
the extrema of the tenth order Chebyshev polynomial were

used as the initial estimates, The procedure converged to
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a solution. The parameter was then reduced to five and the
extrema of the previous polynomial were used as the initlal
estimates. Again, the procedure converged to the solution,
This procedure was repeated until X4 reached zero., AS can
be seen from Figure 5, very small changes in extrema are
occurring for Xy > 1 permitting rather large steps in X, to
be made. Once x; becomes less than one, large changes in
the extrema locations occur and the step size must be
reduced to permit convergence to a solutlon within a
regsonable number of lterations.

Using this method of determining extrema estimates, a
family of polynomials can be produced faster than one
particular polynomial can be if no accurate estimates are
available., In additlon, since the curves of extrema
variation with arbitrary parameter are smoothly varying,
nolynomial regression techniques may be used to form a
polynomial representation of each extrema as functions of
the arbitrary parameter. Using these polynomials, the
extrema for any value of the arbitrary parameter may be

calculated.

F. Comparison with Other Methods
Before the extremum method was developed, several other
methods were used in attempts to synthesize networks wilth
inter-component constraints. The first attempts used

Chebyshev and Butterworth polynomials. These methods
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produced physically realizable electric networks of the
proper form, but which did not meet the component constraints
imposed. Elliptic functions (1, 2, 6) were also tried, but
required changes in the topology of the network. None of
the methods produced a family of polynomials formed through
use of an arbitrary parameter,

The method of approximating a constant developed by
N. B. Jones (7) as outlined in Section 1.C is similar to
the extrema method in some respects. Hls method consists
of translating the Chebyshev polynomiels along the axis;
thus permitting the frequency at which one extremum imay
occur to be specified. By this translation it is possibl
that one or more pass band ripples may be shifted into the
negative frequency region. Jones' method, though simpler,
1s not as versatile and does not permit as wide a range

and choice of parameters as the extremum method.

G. General Remarks

Use of the extremum method as described in this section
permits the development of a multiple-parameter family of
polynomials which are equi-ripple approximations t» a
constant over the range from zero to one. Because it
uses the extrema of the polynomlals as the unknowns, the
methed requires the solution of only (n-m-1) nonlinear
equations and (m+2) linear equations in the development cf

an even polynomial of order 2n. The linear equations
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represent the two end polnts and the m arbitrary parameters.
The nonlinear equations represent the pass band extrema.

The extrema were chosen as the unknowns in the system
in an attempt to reduce the number of nonlinear equations
and thereby reduce the difficulties in computation. How=-
ever, this choice of unknowns produced equations which were
highly nonlinear. This high degree of nonlinearity increased
the difficulties in the computation, especially in terms of
the tendency of the method to diverge.

As 1s i1llustrated in Section III, the extremum method
does work well in practice and can produce practical net-
work designs in cases where the traditional methods failed

to do so,
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III, APPLICATION TO TRANSDUCER DESIGN

The extremum method of approximating a constant by a
multi-parameter family of polynomials was developed in
reponse to an actual industrial problem, the design of an
electro~acoustic transducer. This section outlines that
practical application of this type of approximation technique,

Because of the nature of the miniature acoustic device
being designed, specifications other than frequency response
had to be satisfied. For this reason, standard approximation
methods which are based on frequency response criteria only
were not appropriate and the extremum method, producing a
family of polynomials with similar frequency response char-
acteristics, was developed. This family of polynomials
yields a family of networks with the desired frequency
response, from which the member best satisfying all of the
specitrications can be choseil,

The additional requirements, other than the frequency
response requirements, were dictated by the small size
and the nonelectrical nature of the final device. Several
important inter-component constraints were specifled by
the types of acoustic elements which comprise the final
device. Because of the small size of the transducer,
approximately 1/8 inch by 1/8 inch by 1/4 inch, other
constraints werc imposed upon the final acoustic network,

primarily to make the devlice practically producible by
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mass production fechniques. The basic acoustic configura-
tion specified the topology of the electrical analog used

in the synthesis process.

A. Transducer ReqQuirements
The requirements on the transducer design may be divided
into three categories. These are frequency response, analog

electrical network topology, and inter-component constraints.

1. Frequency response

The fundamental requirement on the frequency response
of the transducer was that, when operating into the human
ear, the overall response be an equi-ripple approximation
to a constant. The peak to valley magnitude of this ripple
was to be three decibels.

The overall system consists of two parts as shown in
the block diagram of Figure 6a, the transducer itself and
the human ear. 1In this block diagram, voltages are used
as the analogs of the var;ous input and output signals.
The overall transfer function, E3/El, has been specified
to be an equi-ripple approximation to a constant. Since

that part of the human ear affec

2o Ll P
ing owhne iregquency

Q
cr

response can be approximated as E3/E, = s, the magnitude
of the required transducer transfer function, EQ/El’

must be an equi-~-ripple approximation to 1/s.
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2. Network topology

Since the final device is an acoustic network, the
topology of the electrical analog network is fixed by the
physical configuration of the device. The electrical analog
which was developed from the acoustlc configuration 1s shown
in Figure 6b, This network was specified independently of
the frequency response and was based solely on the physical
configuration of the device.

The load resistor indicated 1n the diagram includes
losses within the acoustic components and the loading effects
of the ear. The differentiating effect of the ear is not
included within this network. Thus, the network represents

only the transducer and its resistive load.

3. Inter-component constraints

Several constraints on the component values relative to
those of other components were imposed on the electrical
analog by the nature of the acoustic elements and the
fabrication process. These inter-component constraints
are:

1. When scaled to make the load resistor one ochm,

the capacitor, 02, must be larger in numerical
value than the inductor, Lq.

2. When scaled to make the load resistor one ohm,

the capacitor, 03, must be larger in numerical

value than the inductor, ILp.
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3. The value of the input capacitor, C,, must be

equal to or larger than that for C3.

4, The sum of the capacitances should be as small as

possible. Since capacitance 1s a measure of
volume, this ensures a small transducer volume.

The first two of these constraints are absolute require-
ments due to the nature of miniature acoustic elements (4).
The latter two constraints are not absolute requirements,
but are desirable in terms of ease of fabrication and

minliaturlization.

B. Design Procedure

The design consisted of developing a network which met
all the requirements listed above. The first step in this
design involved developing a family of polynomials which
approximate the appropriate function giving the desired
flat response. The second part of the procedure involved
the use of the Method of Gewertz to produce network
functions which could ke reduced to electrical networks
by standard synthesis techniques.

Since the Method of Gewertz was to be used, the
function to be formed was the real part of the squared
input admittance. The denominator of this function was
of the form 14+rP(x), where the P(x) polynomial was a

twelfeth order approximation to zero as discussed in

Section II, To obtain the desired integrating effect,
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numerator of the function was a frequency squared term,
The ripple factor, r, had the value of 0.33 to produce the
desired ripple magnitude. The formation of P(x) is not
affected by the cholce of the ripple factor.

The extremum method was used to form a one parameter
family of polynomials which approximate zero over the range
of x from zero to one. These polynomials and the desired
ripple factor were used as inputs to a computer program
which created the appropriate numerator, applied the Method
of Gewertz and synthesized the electrical network. The
resulting network family was analyzed and examined to

determine those networks which satisfied all specifications.

C. Deslgn Results

1. Results using other methods

Before the extremum method was developed for this

problem, attempts were made to design the transducer usin

i

existing methods. The methods tried were those using
Chebyshev and Butterworth Polynomials and later the more
recent methods developed by N. B. Jones (7) and Deverl
Humpherys (8). These methods failed to produce networks
which met all specifications.

The network component values obtained using the
twelfth order Chebyshev Polynomial are listed in Table 1.
From this table 1t can be seen that, although the network

i1s physically realizable as an electrical network, 1t is
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Table 1. Chebyshev network components

1.259 £
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not realizable as an acoustic network with the inter-

component constraints described previously. Although this
network 1is not a realizable transducer, it will be used as
a basis for comparison for the networks developed using the

extremum method.

2. Results using the extremum method

The design procedures outlined previously were applied
to polynomials formed using the extremum method. The
approximating polynomials were of the form given in
Equation 14. The coefficients for the one paraimcter family

are given in Table 2,

alxl2 + apxt¥ 4 a3x8 + aux6 + &5X4 + a6x2 +1 = P(x)

(1)
This polynomial family was formed using the extremum
of the polynomial located on the imaginary axis of the
x-plane (the real axis of the s-plane) as the arbitrary
parameter. As described in Section 11.D, a large value

for Xy, the arbltrary parameter, was used to form the



Table 2. Polynomial family from extremum method

5.0 16.73305 461, 7408 -1224 451 1092.712 -304 4147 49 67062

4.5 20.56558 450.2625 -1211.770 1086.486 -393.1399 L4Lg ,59531

4.0 25 .86320 434 ,3053 -1194,074 1077.764 -391.3480 49,48923

3.5 33.47606 4311 . 4271 -1168, 750 1065 .296 -388., 7864 49,33725

3.0 44 ,095219 377.0098 -1130.721 1049,.595 ~-384 ,9456 49,10919

2.5 63.29808 321.6480 -1069.163 1016.137 -378.6533 48.73322

2.0 95.10191 225.5953 - 962.,2121 963.0937 -367.6500 48.07110

1.5 156 .4341 39,76873 - T745.4078 859.4108 -345,9530 46,74738

1.0 292 ,5809 - 376.1719 - 284 ,3729 621.6228 -295.2146 43.55585

0.9 338.1299 - 516 ,.3444 - 124 4807 539.7075 -277.4150 W2 Lo274

0.8 393.6276 - 687.7921 72.07461 438 ,3096 -255.,1554 40.93575

0.7 461 .6256 - 898.8974 315.6502 311.5542 -226.9699 39.03735

0.6 545 ,3663 -1160.,410 619.7198 151.6269 -190.8386 36.53588

0.5 648,8170 -1485,778 1001.601 - 51.86849 -143.,9449 33.17370

0.4 776.1910 -1890,157 1482 .029 - 312.1969 - 82.42875 28.56307

0.3 931.1291 -2387.200 2080.825 - 643.1107 - 1.826661 22,18256

0.2 1109.258 -2965 ,550 2788.842 -1043.324 99.09057 13.68778

0.1 1276.406 -3514,960 3472 .,401 -1438.516 202.1804 L 489230
0.0 1350.934 -3761,862 3782.791 -1620.567 250, 7054 0.000000

8¢
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initial polynomial and the extrema of thls polynomlial were
used as estimates for the succeeding polynomlal, In Table 2
1t requires approximately the same number of iterations to
go from any polynomlal to the one limmediately following
when the extrema of the former are used as the initial
estimates for the latter,

The famlly of electrical networks corresponding to the
polynomial famlly of Table 2 was syntheslzZed using the
ripple factor corresponding to a ripple factor of 0.33.

The component values for this network family are glven in
Table 3. Since all members of this network family meet
all transducer requirements, any member may be used in the
final design. Therefore the final selection may be based
on considerations other than those listed in this discussion.
Typlical of the characteristics which were considered in the
final selection are cut-off characteristics, sensitivity to
input signals and stability. 1In the event that this one
parameter family had failed to produce satisfactory net-
works, it had been planned to sacrifice a second pass band
ripple and form a two parameter family of networks.

The networks were examined * thedr frequency responses
using computer generated frequency response plots. Figure
7 shows typical frequency response curves obtained for the
complete system including these networks and the ear

effects, The response curve for the Chebyshev network
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Table 3., Network family

0.0 2.073 1.446 2.273 1.709 1.709 1.306

0.1 2,093 1.418 2.337 1.651 1.760 1.253

0.2 2.126 1.372 2.usl 1.544 1.865 1,142

0.3 2,147 1.342 2.543 1.461 1.961 1.029

0.4 2.156 1.325 2.594 1.406 2,030 0.9310
0.5 2.160 1.317 2,621 1.370 2.076 0.8492
0.6 2,161 1.312 2.635 1.346 2,105 0.7800
0.7 2,160 1.310 2,643 1.329 2.121 0.7208
0.8 2,160 1.308 2,645 1.317 2,128 0.6697
0.9 2.159 1.307 2,646 1.308 2.136 0.6252
1.0 2,158 1.306 2.645 1.301 2,127 0.5862
1.5 2,156 1.304 2,640 1.280 2.090 0.4455
2.0 2.154 1.302 2.636 1.270 2,045 0.3590
2.5 2,153 1.302 2.633 1.264 2.008 0.3004
3.0 2.153 1,301 2.631 1,261 1.977 0.2581
3.5 2.153 1.301 2.630 1.258 1,952 0.2262
4.0 2,153 1.301 2,630 1.256 1.931 0.2014
4.5 2,152 1.301 2.628 1.255 1.915 0.1814
5.0 2.152 1.301 2.628 1.254 1.900 0.1650

design is included for comparison purpcses.

3., Additional test results

Several additional tests were performed on the networks
formed using the extremum method to aid in theilr evalua-
tion. These tests included sensitivity to polynomial
coefficlent precision and effects of varying the ripple
factor on the component values,

A series of tests were made on the networks to determine

the effects of reduced polynomial coefficient precision.
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In this series of tests the number of significant figures
in the polynomial coefficients was reduced until there

was a significant change in the frequency response curves
of the resulting networks. The computer generated response
curves were used as the basis for comparison. No notice-
able change (less than 1%) was noticed until the number of
significant figures was reduced to three., For this value
the response curves differed noticeably (greater than 5%)
from the more precise curves. Therefore, it was decided
that four significant figures were satisfactory and this
precision was used throughout the remainder of the synthesis
and analysis,

A series of tests was performed to determine whether or
noct the ripple magnitude could be reduced without violating
one or more of the inter-component constraints. Table 4
gives the results of one of these tests, For this test
the arbitrary parameter was held at 0.5 and the ripple
factor varied from 0,5 to 0.0001. The results of this
test show that the ripple factor could be reduced to 0.0l
before the Cp-Ly constraint was violated. Tests using
other values for Uhne arbitrary parameter showed similar
results although the value for r at which the constraint

was violated did vary with Xy.



Table 4, Network variations with ripple factor

0.5 2,657 1.086 3.209 1.171 2.425 0.9690
0.1 1.650 1.633 1.997 1.589 1.573 0.6311
0.05 1.542 1.680 1.851 1.586 1.399 0.5496
0.01 1.401  1.640 1.640 1.454 1.113 0.4196
0.005 1.354 1.595 1,566 1.379 1.020 0.3793
0.001 1.247  1.469 1,405 1.205 0.8u64  0.3070
0.0005 1.200 1.410 1.337 1.135 0.7849  0.2824
0.0001 1.091 1.273 1.188 0.9562 0.6643 0.2356

D. Conclusions

In this particular problem the extremum method permitted
the formation of a family of transducer analog networks,
all members of which satisfled a variety of specifications
imposed on the networks by the nature of the acoustic
device and the fabrication process. The application of
exlsting approximation techniques resulted in networks
which failed to satisfy these same specifications. The
cost of obtaining this one parameter family of networks was
the sacrifice of one pass band ripple and the resulting

deterioration in the cut-off characteristics.



hu
IV. THE COEFFICIENT METHOD

In thils section and the two which follow the coefficient
method of forming approximating polynomials is discussed
and 1llustrated, The concepts underlying this method and
detalls of the development of the method based on these
concepts are covered in this section. 1In Section V several
examples of polynomials developed using the coefficient
method are shown in order to illustrate the versatility of
this method. Examples of the application of the coeffilcient
method to problems of network synthesis are included in
Section VI.

The major purpose of the coefficient method 1s to permit
a wide variety of functions, irrational as well as rational,
to be approximated by polynomials in a form suitable for use
in network synthesis. This approximation is to be within
specified magnitudc limits and over a given range of the
independent varlable. 1In addition, it 1is desired to allow
arbitrary parameters to be specified within the method so
that multi-parameter families of approximating polynomials
can be formed. An additional purpose 1s to develop a
method which accomplishes the above buft does not require the

solution of a system of nonlinear equations.

A. Characteristics of the Coefflcient Method
In the above statement which describes the purpose of

the coefficient method, four desirable characteristics
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are glven., These characteristics are:
1., approximation to a wide variety of functions,
2. specified magnitude 1limits on the approximatilon,
3. allowable arbitrary parameters,
4, simplified methods of computation,
These characteristics are described in detail in the following

discussions.

1. Functlons to be approximated

The major purpose of the coefficient method 1is to permit
a wide variety of functions to be approximated by a poly-
nomial in a form suitable for use in network synthesis.

For practical purposes the functions of interest must be
limited to those which are finite and single-valued over
the range of approximation. These functioﬁs may be rational
or irrational, explicit mathematical forms or plece-wise
linear approximations to functions which cannot be specified
explicitly.

This approximation is described in Figure 8., 1In this
figure, f(x) is the function to be approximated by the
polynomial, P(x). The range of the approximation is from
X = BW to x = 1., The limits within which the approximation
must fall are Hy(x) and Hp(x). This notation 1s used
throughout the discussion.

There are four posslble combinatlions of factors

affecting the shape of P(x) in Figure 8. These factors
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are the end condition slopes and the number of pass band
ripples, Figure 8a indicates the shape of P(x) for an

even number of pass band ripples and a positive slope at

X = 1., In Figure 8b, the number of ripples is odd and

there 1s a positive slope at x = 1. If a negative slope at
X = 1 1s desired, P(x) is reflected about f(x) and

approaches Hl(x) instead of Ho at the uppermost approach
point.

2, Limiting functilons

In the coefficient method the limiting functions,
Hl(x) and Ho(x), are of more importance than the actual
function to be approximated since these functions define
the range of variation for the polynomial being developed.
These limiting functions are functions of x and are not

limited to being equi-spaced about the function f(x).

functions for use with the coefficient method. The first
involves the use of f(x), the function to be approximated,
and 1s 1llustrated in PFigure %a. In this procedure, the
limits are defined by Equation 15,

Hl(x)

£(x) + hl(x)
(15)

HQ(X) f(X) + ha(x)

The functions, hy(x) and ho(x), may be any finite single-
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valued functlions of x, subject to the restriction
Hl(x) > £(x) > Hy(x).

A more general method of defining the limiting functions
is shown in Figure 9b. 1In thils method the limiting
functions are deflned independently of the function to be
approximated. Indeed, no function, f(x), has to be
specified. For computational purposes the limiting func-
tlons are defined in this manner no matter which method 1is

used in their specification.

3. Arbitrary parameters

The desire for arbiltrary parameters within the approxi-
mation method is predicated upon the application of this
method to a varlety of network design problems. Families
of networks can be formed using these arbltrary parameters
and certain inter-component constraints satisfied by given
family members. Al1S0, these parameters may be used to
control directly some specific characteristic of the net-
work such as cut-off or d.c. behavior.

In order for the arblitrary parameters to be used to
control a variety of characteristics or to satisfy various
inter-component constralnts, it 1s necessary to use a
variety of parameter definitions. Some of the parameter
definitions available using the coefficient method include
polynomial coefficlents, points through which the plot of

the polynomial must pass, zeros of the polynomlal and the
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slope of the polynomial at a point. The d.c. behavior of
the resultant network can be specified by control of the
constant term of the polynomial, 0. Network cut-off
characteristics msy be affected by variation of the
coefficient of the highest power of Xx, 8 and the slope
of the polynomial at a point.

There is one restriction on the cholce of the arbltrary
parameter value, The value of this parameter must not force
the resulting polynomial to cross the limiting functions

within the range of the approximation.

4, TImprovement in the method gg_computation

The coefficient method requires computation methods
which are much less complicated than those of the extremum
method and therefore it can be made faster and more accurate.

The major computations required during one iteration of
the coefficient method are the solution of a system of
n + 1 linear equations and the factoring of a set of
polynomials. Both of these computations may be accomplished
using standard library procedures. For improved perform-~
ance, special purpose techniques for performing these

operations could be designed, but these are not necessary.

B. Development of the Coefficient Method
The coefficient method 1s a technique for developing a

family of polynomials which fall within two limiting
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functions, Hl(x) and Hy(x), over the range of x from BW to
one and are tangent to thse limits at the points of inter-
section, The discussion of this method 1s based on Figure
10, The notation used is defined by this figure. Figure
10 1llustrates only one of the four possible configurations
discussed in Section IV, A, 1.

The following steps are performed during each iteration
in the process of forming a polynomial, P(x), which meets
the requirements stated above.

1. A set of estimates to the points of tangency of
the approximating polynomial and the limiting functions is
obtained. These points, labelled x4 in the diagram, are
obtained either from the previous iteration or externally.

2. A polynomial, Py(x), is formed which intersects
Hy(x) and Hy(x) at the x; and passes through the specified

nd peints. The formation of this polynomial includes the

[{"

m arbitrary parameters and requires the solution of a set
of n + 1 simultaneous equations.

3. The polynomial formed in step 2 is tested for
points X4 at which the derivative is equal to that of the
correct limiting functions.

4., The set of estimates, xj, is compared with the set
of equal slope points, Xj, to determine if they are
coincident within some measure of error. If so, the

polynomial P,(x) is a solution,
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5. 1If the polynomial 1s not acceptable as a solution,
a new set of x4 is formed based upon the previous x4 and
the computed equal slope points, Xi'

6. Steps 2 through 5 are repeated until a satisfactory
polynomial is formed. Additional detalls concerning these

steps is given in the following discussion.

1. Data input
There are two types of input required by the coefficient
method. The first type includes all necessary data about
the characteristics of the resultant polynomial. The second
input defines the limiting functions on the approximation.
The polynomial data necessary are the polynomial order,
the number of arbitrary parameters, the number of pass band
ripples, the dimensions of the pass band, the upper limit
in the allowable error measure and the approach point esti-
mates. Tne order of the polyncmial to he used depends upon
many factors including the shape of limiting functions, the
number of pass hand ripnnles desired, the number of
arbitrary parameters needed and the desired precision of
the approximation, If the form of the network to be
synthesized is specifled, this will be a determining factor
in the polynomial order also, There is a relation between
the number of pass band ripples, the number of arbitrary
parameters and the order of the polynomial. If one of

these data is varied, a change must be made in the others
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to maintalin thils relationship. For an even polynomial of
order 2n the number of pass band ripples plus arbitrary
parameters must be n-1,

The second type of data required is that necessary to
define the limiting functions in a form which can be used
in the computational scheme employed. Unless the functions
can be expressed as polynomials, it 1s more convenient to
reduce the functlons to a data table and use table look-up
procedures where necessary. This process allows all
functions to be handled using the same basic computational
procedures regardless of the method of defining the limits,
If the limiting functions are polynomials, the overall
computations may be simplified by a special purpose pro-

cedure.

2. Initial estlimates

The terms svmholized by X. are the initial estimates of

I=

the values of x at which the polynomial is tangent to the
limiting functions. This same symbology 1s used to describe
the revised estimates supplled to any other cycle by the
previous cycle,

Without previous experience, there is no good way of
making an accurate estimate of the x;, especially 1if the
limiting functions are complicated functions of x. Since
the method of computationTQeveloped for the coefficient

method does not require the solution of a system of non-
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linear equations, the choice of the lnitial estimates 1s
not a8 critical as in the extremum method. Experience
gained in developing the polynomials described in Section V
has shown that the coefficient method will converge to a

solutlon for any reasonable estimate of the approach points.

3. Coefficient equation system

The second algorithm of Remes (10, 11) was adapted to
provide a method for developing the coefficients of a test

polynomial having the form of Equation 16.

_ 2n 2n-2 2
P(x) = a1x" + a,X + oo taxt +a o (16)

The system of n-1 equations given as Equation 17 uses
the ay coefficients as the unknowns and powers of x, as the
equation coefficlients, This set of equations is written

as though the polynomial intersects the upper limit at Xy

and the lower limit at x,_; a& in Figure 10, Two additional
on 2n-2 2
2n 2n-2 —
a-X en + ax_ .on-2 2 = Hp(x,_q)
1%n-1 2°n-~1 t ..o TapXn) * &+l T 2\"n-1

equations are needed which define the end point conditions.

These two equations, given below as Equation 18, plus the
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(n-1) equations defined by Equation 17, are the (n+l)

equations needed to determine the (n+l) coefficients of an

P(BW) = Ky
(18)

P(1) = Kp
even 2n*P order equation. The two constants, Ky and Ky, in
Equation 15 are values of P(x) at the end points of the
pass band, These values may be selected arbitrarily subject
only to the restrictions Hy(BW) < Ky < Hp(BW) and
H1(1) < Ko < Ho(1). This set of equations deseribes the
conditions illustrated in Figures 8a and 10 and 1is used as
one possible example of the four possible described in
Section IV, A, 1,

Equations 17 and 18 are written as though there are
no arbitrary parameters. With each arbitrary parameter
used, the number of equations in Equation 17 15 reduced by
one and replaced by an equation which defines the param-
eter. If, as is common, one of the coefficients of
is used as a parameter, one equation in the system
described by Equation 17 is replaced by ajp = Ky where
Ky is an arbitrary constant. Thus the system of equations
to be solved consists of m equations defining the param-
eters, n-m-1 equations for the x4 conditions as in Equation
17 and the two end conditions of Equation 18.

The a4 coefficients are the unknowns in the system of
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equations formed by combining Equations 17 and 18 and the
equations defining the arbitrary parameters. Since the a4's
are the unknowns, the system of equations 13 linear except
for the right hand side of the equations which are func-
tions of x. However, because an estimate of x is used and
the limits are defined for all X, these functions appear as
known values for any one iteration. The value of these

functions will vary with succeeding iterations,

4, Formation of an approximate polynomial

Once the system of equations has been solved for the
polynomial coefficients, an approximate polynomial,
Pa(x), may be formed. This polynomial, as shown in Figure
10, passes through the estimates of the approach points,
Xy, and satisfies the two end conditions. This polynomial,
must be examined to determine the points of equal slope,
Xi’ in order to ascertain whether or not 1t may ©¢ con=

8idered & solution.

5. Approach conditilons

Before P, (x) can be considered a solution, it and the
limiting functions must have equal slopes at thelr points
of intersection. This condition implies that the two
curves do not cross as shown in Figure lla but become
tangent as shown in Figure 11b.

The crossing and overshooting shown in Flgure l1lla 1i8
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due to the slope of P (x) being larger than the slope of
H(x) as P,(x) approaches H(x). This is the condition which
redquires a tangentlal approach to the limits rather than
the extrema approach used in the extremum method. The
curves of Figure 1lla satisfy the extremum approach in that
the second intersection occurs at the extremum of P(x),

but overshooting occurs, The tangentlal approach of Figure
11b ensures that overshooting will not take place unless
there are abrupt changes in the slope of H(x).

Since there are two methods of defining the limiting
conditions, explicit mathematical expression or plece-wise
linear approximation, two methods for testing the approach
conditlions are required, The first of these 1s applicable
whenever the 1limiting functions are expressed as poly-
nomials and the second is used whenever the limiting
functicons must be expressed as transcendental functlons
or as plece-wise linear approximations,

For limiting functions which can be exXpressed as
polynomials in x, the test of approach conditions requires
the roots of Equation 19 to be found. If Hj(x) - H2(x)

1s a constant for all x over the range of the approximation

Pa'(x) - Hl'(x) = 0 (19a)

ll
(@

P, '(x) - Hp'(x) (19b)

only one of these equations 1s needed. Since factoring the
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two equations will give a total number of roots which 1s
twice the number required, the roots must be arranged in
numerlical order and sSelected to ensure that the limits are
approached alternately. Using Figure 10 as an example,

the first root 1s selected from the set found by solving
for the roots of Equation 19a. The second root is selected
from the roots of Equation 19b and so on until the appropriate
number of roots has been selected. This set of roots is the
set of points of equal slopes designated Xi in Figure 10.

If Hy(x) and Ho(x) are not polynomials, Equations 192 and
19b are not easily factored and pilece-wlse linear approxi-
mations must be used.

In the event that the limiting functions must be approxi-
mated in a piece-wise linear fashion, the test for equal
Slope points becomes more complicated. Equation 19 must
be repiaced bv a System of eguations each having the form

2

given in Equation 20, 1In this equation the xi's represent

P,'(x) - SL(x,) = O (20)

the approach point estimates and it i1s necessary to find
the roots of as many equations of this form as there are
approach points to be tested. The term, SL(x4) is the
slope of the piece-wise linear approximation in the
vicinity of xy. 1In this case, as 1ln the one above, there

are more roots than are needed and appropriate values for
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the xi's must be selected.

There are many methods which could be used to select an
appropriate set of roots to use as the points of equal
slope. One method of selecting the proper root from each
of the root sets 1s illustrated by Figure 12, For each
root set a range of values is specified and the first root
falling within that range is selected. The method of
specifying thils range using midpoints as shown in the
figure has proved successful for most of the polynomials
developed. In the cases for which the midpoint method has
falled, it has been found that a tightening of the range of
the roots nearest unity has prevented osclllation about a

solution and a final solution has been obtained.

6. Test of the approach points

At this point in the computation cycle, there are two
sets of vaiues for x. The first is the original set of
estimates used to form Equation 17 and to determine the
coefficients of the test polynomial. The second set is
that obtained from the approximate polynomlal in the menner
described in the previous section and which satisfies the
approach condition., The difference between these two sets
is used as a measure of convergence,

The test for convergence is based on the sum of the
squares of the differences between the two sets of estimates.

When this sum of squares is less than some specified maXimum,
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the test polynomlal 1is considered to be a solution to the
approximation problem. Through experience it has been
found that, with proper choices of the value of the
arbitrary parameter, this maximum value should be 10'6 or
less, For some choices of the value of the arbitrary
parameter, it has been found that the polynomials are
sensitive to changes 1n the approach points., Therefore,
the maximum value of the measure of convergence must be
made smaller than the value of 10"6 suggested.

If the measure of convergence 1s greater than the
prescribed maximum, the set of x's which do satisfy the
approach conditions can be used as the next set of approach
point estimates for the next cycle of calculations. This
cholce permits rapid convergence to a solution but also
increases the tendency of the method to diverge. To reduce
the possibility of divergence, a revised set of estimates
is used whenever the most recently computed measure of
convergence 1s greater than the previous minimum. The
method of revision chosen was to use the midpoint between
the previous best estimates and the present estimates as

nAaQ ih'l a
vav L

w

the input To the nextv cycle., Thére are many cther
revision techniques, but this one has been found to
prevent divergence and permit convergence to a solution

within a reasonable number of iterations.
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C. Properties of the Coefficlent Method

The coefficlent method as derived in the prevlious sections
has all the desired characteristics listed in Section IV, A,
This method permits the formation of a multi-parameter family
of polynomials all of which are approximations to the same
function. The limits on the allowed deviatlon from this
function may be arbitrary functions of x. The function to
be approximated and the 1limits within which the approximatilon
must remain may be defined either as explicit mathematical

functions or as dsta tables.

1. Control varilables

There are properties of the approximation other than the
arbitrary parameters which can be easily varied as input
parameters, These properties include the magnitude of the
variation about the function, the band width of the approxi-
mation, and tne order ¢f the polynomial,

The magnitude of the allowed variation from the desired
function is accomplished by varying the limiting functions,
This is done either by redefining some explicit function
or by providing a new data table to describe the functions.

The band width, or range of x over which the approxi-
mation is to be made, 1s changed by varying the lower cut-
off frequency. This band width parameter is symbolized as
BW in Figures 8 and 10. Since the upper cut-off value has

been normalized to unity, this parameter is defined as
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some fraction of this upper range and as such will always be
less than one,

The order of the polynomial to be formed is controlied
by an input quantity. When the order of the polynomial
is changed, either the number of approach points within the
pass band must be changed or the program must be redesigned
to accommodate an increase in the number of arbitrary
parameters,

Another characteristic of the method which may be con-
sidered as variable is the method of approach to the limits.
All previous discussion has dealt with the method using
the tangential approach. In theory, this approach condifion
may be changed, although, in practice, it will seldom be
necessary to do so. One change which may be of practical
importance deals with the 1dea of closest approach instead
of actual equality. If this 1is desirable, the equality
signs of Equation 14 must be changed to inequality signs
and the problems in computation become much more severe,

An alternative to this change is the possibllity of varying
the 1limits to within the original set and attempting to

he more precise approximation. If the limiting

form ©
functions are properly defined, this problem should never

arise in practice.
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2, Comparison with the extremum method

The extremum method was designed to be a special purpose
approximation technique to solve a particular problem. For
this purpose it has proved to be satisfactory. The co-
efficient method was designed to be a versatlle multi-
purpose approximation technique which could be applied to a
wlde range of problems. So far as can be determined from
present experience, it also performs satisfactorily.

The coefficient method permits the formation of multi-
parameter families of polynomials which approximate various
functions to within limiting functions which may vary with
the independent variable. The extremum method 1s limited to
form multi-parameter families of polynomials which approxi-
mate a constant in an equi-ripple manner. It 1s possible
that the extremum method could be revised such that the
equi-ripple characteristic is not a requirement, but since
the coefficient method is available, it 1s preferable to
use the coefficient method and to consider the extremum
method as a speclal purpose technique only.

Since it contains a band width control factor which is

of band pass filter networks. The extremum method was
designed to be used in the design of low pass filter net-
works. Once again, 1t is possible to revise the extremum

method to enable it to be used for low pass and band pasSs
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design, but the coefficlent method makes this revision
unnecessary.

The two methods were derived uslng simllar hypotheses.
Despite this similarity in origin, the calculations
involved in the two methods are quite different. Both
methods require the solution of a system of equations which
includes both linear and nonlinear equations, In the
extremum method, the degree of nonlinearity is very high
and most of the problems in the computation are due to this
nonlinearity. 1In the coefficient method, the degree on non-
linearity is very low 2nd no solutions of system of non-
linear equations are actually required.

Improved methods of factoring polynomials and solving
systems of nonlinear equations would increase the usefulness
of both methods by significantly.reducing the time required

to reach a solution.

3. Comparison with other methods

Of the methods of approximation outlined in the intro-
duction only the method developed by D. S. Humpherys (8)
i1s similar enough to the coefficient method to permit
meaningful comparison. The other methods mentioned are
limited in their application by lack of flexibility.

The method proposed by Humpherys is designed to produce
rational function approximations of & polynomial in an

equi-ripple fashion. The use of a rational function to
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accomplish the approximation is one major difference between
Humpherys' method and the coefficient method, which uses a
polynomial for the approximation. There are advantages
assoclated with either specification. Use of polynomials
allows the numerator and denominator polynomials of a net-
work function to be specified separately. The entire
function may be specified as a unit if a rational functién
approximation 1s used. The particular application 1is the
determining factor in the decision of which specification

is to be used.

Humpherys' method 1s more general than other rational
function approximation techniques., It does permit the
approximation of a variety of polynomials in an equi-ripple
manner with fewer than the maximum number of pass band
ripples. Therefore, it permits the use of arbltrary
parameters similar to the coefficlent method. In the method
as described, these arbitrary parameters are limited to
imaginary zeros of elther the numerator or denominator
polynomials., It 1S possible that the method could be
revised to allow other definitions of the arbitrary
parameters. However, if this were done, the simplicity
of the computations would be lost.

The major advantage of Humpherys! method is the fact
that only simple linear equations must be solved once a

proper set of conditions has been established. This
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simplicity 1s a result of three limitations on the method.
The first limitation, as stated above, 1s the restriction on
the cholce of the arbltrary parameters. The second limita-
tion involves the approach condition. Humpherys' method
assumes that an extremum approach will be adequate for the
functions to be approximated. It has been shown in this
thesis that thils 1s not necessarily true. The third limita-
tion 18 that the function to be approximated must be
expressed as a polynomial., Any of these limitations may be
removed by proper revision of the method, but this is
accomplished at the cost of increased complexity of the
required computations. The coefficient method was designed
to be free of these limitations and thus requires much more
in the way of computation than does the method of Humpherys',

however it is more versatile,

The major problems associated with the coefficient
method are those due to difficulties in the computational
processes. These difficulties result in reduced accuracy
and increased computation times, Unlike the extremum
method, there is no requirement that a system of nonlinear
equations be solved. Instead, the coefficient method
requires that, during each iteration, a number of poly-
nomials equal to the number of points of approach within

the pass band be factored. An estimated 80 percent of the
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time required for each cycle is used 1n these factoring
processes, Thils time 1s reduced appreclably if the
limiting functions can be expressed as polynomials since
for that case, only two polynomials must be factored for
each cycle, At present, industry supplied programs are
used for factoring these polynomials. These are iterative
methods and may, in some cases, diverge or gilve inaccurate
answers., For examples in which the limiting functions

have large slopes these inaccuracies are often large enough
to prevent the method from converging to a solution.

One possible solution to the above problem is the design
of a special purpose program to factor the polynomials.
The programs now used are general purpose methods used to
find all the roots of the polynomials. Since only the
positive real roots falling within a given range are of
interest, a program could be designed to find only these
roots. Such a program could prove to be faster and more
accurate than the general purpose ones now used,

A problem arises whenever the limiting functions have
abrupt changes in slope. It is possible that in the
vicinity of such changes the approximating polynomial
may overshoot the 1limits (See Figure 23, Section V, B for
an example). There are two possible solutions for this
problem. The first would be to include within the program

additional calculations which would test every point along
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the curve for such overshooting. The second possible
solution would be a redefinition of the approach conditions
to include higher order derivatives. In elther case, the
increase in computation may be impractical and will not
necessarily ensure that such limit crossings do not take
place.

Attempts to form a general program met with a general
lack of success. Because of the large variety of possible
arbltrary parameter definitions, no one program can include
all choices. It is felt that the improved accuracy and
reduced computation time possible with special purpose
programs make such programs more desirable than an all-
purpose program which attempts to do everything for every-
body. Once the basic ideas are understood and several
fundamental decisions have been made for the particular

problem, the design of a specific program is not difficult.

D. General Remarks

The cecefficient method developed in this section of the
thesis allows the formation of multi-parameter families of
polynomials, Within these famillies, all polynomials have
graphs which fall between two limiting functions, The
number of parameters used and their definitions may be
chosen at will and thus may be used to shape specific
portions of the network frequency response, The limiting

functions to be used are not restricted to explicit
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mathematical expressions, but may be defined as data tables,
thus permitting an almost unlimited cholce of limiting
functions,

Several problem areas do exist in the actual calculations
involved in the coefficient method, but these do not detract
from the ideas behind the method. These problems are largely
results of programming difficulties, As improved methods
of analysis and calculations are developed, the effects of
these problem areas will be reduced.

Unlike the extremum method, the coefficient method was
designed to be as general as possible and not as a solution
to one particular problem., For this reason no complete
design, similar to that of Section III has been carried out
using the coefficient method. At the time of this writing,
it has been used in the design of a more sophisticated
transducer than that of Section III, but the design 1s not

complete.
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V. EFFECTS OF CONTROL FACTORS

There are several control factors within the coefficlent
method, exclusive of the arbltrary parameter, which affect
either the convergence to a solution or the properties of
the approximation polynomlial being formed. This section
includes a discussion of these factors and illustrates the
effects on the polynomials being formed when these factors
are changed in value.

The first factors of interest are those which affect
the tendency of the method to converge to a solution. 1In
many cases these factors have no direct effect on the
approximation, although they may permit formation of a more
precise approximation. This precision 1s usually indicated
by the behavior of the polynomial in the vicinity of the

approach points. The more precise the approximation, the
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true tangential intersection. These factors include the
maximum value of the measure of convergence, the value of
the particular arbitrary parameters being used and the
approach point estimates.

The second set of factors of interest includes those
factors which directly affect the shape of the approximating
polynomials and the range of the approximation. These

include the pass band width factor, the order of the poly-

nomial, the limiting functions and the number of ripples
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within the pass band. These factors are specifled inde-
pendently of the arbitrary parameter definitions or thelr

numerical values and define the approximation problem.

A. Factors Affecting Convergence
The factors affecting the convergence of the coefficient
method which are of interest are those which have an effect
on the convergence properties but are not part of the approxl-

mation definition.

1. Maximum meaSure of convergence

The measure of convergence within the coefficient method
has been defined as the sum of the squared differences
between the original estimate set used to inltiate any one
iteration and the set of improved estimates resulting from
that iteration. This sum must be less than some specified
maximum measure of conversence hefore the polynomial formed
in that iteration can be considered to be a solution.

The selection of a value to be used for this maximum
is dependent upon several considerations. Among the points
to be considered are the shape of the limiting functions,
the number of pass band ripples and the values of the
arbitrary parameter.

The shape of the limiting functions has a decided
affect upon the convergence and the precision of the

approximation for a given maximum measure of convergence,
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For a required precision, the maximum measure of convergence
must be reduced in problems contalning limits which have
large slopes to avoid significant errors in the area of
maximum slope.

The number of pass band ripples affects the necessary
value of the maximum measure of convergence because of the
definition of this quantity as a sum of terms. For a gilven
number of pass band ripples, the average precision of each
approach point can be defined as the maximum measure of
convergence divided by the number of pass band ripples.
Therefore, the solution to an approximation with many pass
band ripples must be more precise than that for one with
fewer ripples using the same measure of convergence because
the average allowed deviation 1s smaller, For thils reason
the allowed maximum measure of convergence must be based
upon the number of pass band ripples., The larger the
number of ripples, the larger may be the maximum measure
of convergence,

Another factor affecting the selection of the maximum
measure of convergence is the value of the arbitrary

parameter. As is discussed in more detall in the follcow

-

section, this value has a direct effect on the sensitlvity
of the polynomial to changes in the approach points and
must be considered 1n the choice of a proper convergence

factor.
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The number of iterations requlred for solution 1is
strongly dependent upon the maximum allowable value for the
measure of convergence. For well behaved functions a value
of lO'6 has proved to be satisfactory in permitting rapid
convergence to a solution and a precision to within 1 percent.
If the value is reduced by a factor of 10 the number of
lterations required for solution will more than double. As
the value is reduced further, the number of iterations
required for a solution increases rapidly.

The value for this maximum megsure of convergence used in
the examples of thls section was 10'6. This value was chosen
as a compromise between adequate precision and rapid con-
vergence to a solution. As can be seen on several of the
figures, this value 1s not always low enough for acceptable
precision., In some cases of rapidly converging iterations

the actual measure of convergence was as low as 10‘8.

2. Optimum range of parameter values

If the value of the arbitrary parameters is chosen at
random, the convergence to a solutlion may be affected. It
is possible to select values for which the method will not
converge within some finite number of limits. Attempts
to form a polynomial to approximate x3 failed to converge
within 200 iterations for one choice of the value of the
arbitrary parameter. When this value was changed, con-

vergence to a satisfactory solution was obtained within 20
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iterations, This same effect has been noted in many of
the examples solved while testing the method.

Experlence has shown that for most problems there 1s an
optimum range for the value of the arbitrary parameters,.
For values within this range, convergence is obtained
rapidly and the approximation does not overshoot the limits
or fall to intersect the limits. Polynomials formed using
parameter values outside of this optimum range are sensitive
to changes in approach points and do not become tangent to
the limiting curves unless the maxlimum measure of conver-
gence is reduced by at least an additional factor of 10
below that needed for approximations using values within
the optimum range.

Several of the examples which follow illustrate this
increased sensitivity to changes in approach points. This

is usually manifested by failure of the curves to become

('<:

tangent to the limit curves. This fallure can be overcome
by elther changing the value of the arbifrary parameter

or reducing the maximum allowable measure of convergence.

3. Approach point estimates

The convergence to a solution of the coefficient method
is not strongly dependent upon the 1nitilal estimates of
the approach points, This freedom from the requirement
for an accurate set of estimates is primarily due to the

fact that only linear equations are used in the lterative
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process, Experlience using the method has indicated that
the process will converge for a variety of estimates within
the pass band.

For most of the examples which follow, the same set of
approach point estimates was used. The number of iterations
required for convergence varied with the problem being
solved from a maximum of 39 to a minimum of 8. For examples
in which estimates were obtained from previous solutions
convergence to a solution occurred within 10 iterations. If
no previous knowledge of accurate approach point estimates
is available, it has been found that a set of points roughly

equally spaced between BW and one serves as a satisfactory

set.

B. Factors Affecting Polynomial Shape

Within the coefficient method there are factors which
may be varied to control the Shape of the approxXximating
polynomial. These factors are used to define the approxi-
matlion problem and are chosen independently of both the
arbitrary parameters and the factors which affect the con-
vergence conditions. These control factors include the
band width of the approximation, the spacing between the
limits, the order of the polynomial, the approach conditions
and the method of defining the limiting functions.

Each of these factors is discussed and 1llustrated in

the following sections. In each case only the factor being
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discussed is varled, although in several cases a famlly of
curves 1s shown due to varlatlions in the arbitrary

parameter,

1., Band width

For purposes of this thesis the term "band width" is
defined to mean that portion of the total frequency
reponse within which the response shaping is to be performed.
In many of the curves shown there 1s no sharp cut-off of the
high or low frequency response, but rather a gradual sloping
away from that part of the response which was to be shaped
by the polynomial.

The polynomials formed for this example are one-
parameter approximations to x within ¥ 0.33x, The co-
efficient of xl4 was chosen as the arbitrary parameter and
set equal to 600, The tangential approach condition was
used,

Figure 13 shows the curves of the polynomials which
result when the width of the pass band 1s varled. The
values of the band width factor, BW, are 0.05, 0.10, 0.15,
and 0.20. As the width of the pass band is decreased, the
cut-off at low frequencies becomes more apparent. For low
values of the band width parameter, there 1is little
decrease in response below the lower cut-off frequency.

Even though the measures of convergence are similar

for the four polynomials, there are obvious errors in the
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approximation as the band width parameter 1s increased.
This indicates an increased sensitivity to changes in the
points of approach to the limits. This increased
sensitivity may be reduced and the errors in the approxi-
mation eliminated by proper cholce of the value of the
arbltrary parameter. 1In each of the polynomials plotted,

the value of the arbitrary parameter was held to 600.

a. BW = 0.20 Ap, = 600 ripple factor = 0.33

soox ¥ - 1615x%° + 1437x10 - 339.8x8

laY}
[\
~
~
|

. 157.8x0 + 86.47x% - 10.17%2 + 0.505k

b. Bd = 0.15 Ay, = 600 ripple factor = 0.33
Pp(x) = 600x2* - 1650x12 + 1560x10 - 510.8x°
o up.u8x® v a7t - 4.378x% + 0.2741

c. BW = 0.10 Ap, = 600 ripple factor = 0.33
p(x) = 600x™* - 1637x12 + 1643x10 - 623.3x°
- 31.81x° + 23.60x* - 1.011x° + 0.1408

d. BW = 0.05 Ay, = 600 ripple factor = 0.33
py(x) = 6oox™* - 1687x%2 + 1697x10 - 706.5x°

+ 91.05x6 + 4.048xq + 1.599x2 + 0.0625
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2, Spacing between limits

In some approximation problems it may be desirable to be
able to vary the spacing between the limiting functions
without actually varying the functions themselves, Thils 1s
especially true in those cases in which the limits are
defined by explicit mathematical expressions.

In the approximation problems of the previcus example,

the limiting functions were defined as;

1.33%

fa
[N

X
Il

0.67x

5
>
!

For purposes of varying the ripple (1l.e., changing the
spacing between the limiting functions) the limiting
functions are defined by Equations 21. As the ripple

factor, R, is varied, the limiting functions change as

Hy(x) = (1 +R)x

(21)

HE(X) (1 - R)x

shown in Figure 14. The polynomials plotted in this figure

are;
a. R = 0.25 Ay, = 600 BW = 0.1
x) = 6OOx14 - 1784x12 + 196Ox10 - 956.8x8

+ 188.9x6 - 8.129x4 + 1.149x2 + 0.1143
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b. R = 0.33 Ay, = 600 BW = 0.1

Pp(x) = 600x™* - 1673x'% 4 1684x10 - g2k, 0x8
+ 32,2850 4+ 23.65x% - 1.007x° + 0.1408

c. R = 0.50 Ay, = 600 BW = 0.1

P (x) = 6ooxtH - 134712 + 755.8x10 4 259.4x8

6 b

- 368.7x° + 97.61x" - 5.729X2 + 0,1979

As 1n the previous example; there is an apparent change
in polynomial sensitivity to changes 1n points of approach.
A better cholce of values for the arbitrary parameter will
reduce the error caused by this increased sensitivity.

The polynomial

P(x) = 6x14 - 16.2x12 + 16.5xlo - 8.11x8 + 2.78x6

i

+ 0.114x7 - 0.000843x° + 0.0000573

is a one parameter approximation to x5 over the range

x = 0,1 to x = 1.0 using a ripple factor R = 0,01, No
problems regarding convergence were encountered once the
value of A,, was reduced in values below 20. This
approximation 1is illustrated in Figure 15, No attempt
has been made to approximate a function using a smaller

ripple factor.



85

P {X)

+~ 0

d

T " L] L LJ

FIGURE I5. |% APPROXIMATION TO X°

<4

.q-l—



86

3. Polynomial order and pass band ripples

One of the more important properties of the coefficlent
method allows the order of the polynomial being formed to
be varied without affecting the remainder of the approxi-
mation definition. The only limitation on this variation
is dictated by the interrelation of the polynomial order,
the number of pass band ripples and the number of arbitrary
parameters, Unless a change in the number of arbitrary
parameters is desired, the number of pass band ripples must
increase as the order of the polynomial increases,

One important consideration in the cholce of the order of
the approximating polynomial must be in the shape of the
function being approximated. 1If the approximating polynomial
has 1ts maximum slope less than the slope of the functilon
being approximated in the range of the approximation, there
is a minimum spacing between limlts which 1s dictated by
this condition. Normally, the approximating polynomlal will
be chosen to have order high enough so this condition should
never arise in practice,.

The preceding examples have used polynomials of
fourteenth order and cne arbitrary parameter thus requiring
five pass band approach points, The polynomials plotted
in Pigure 16 were developed using the same program that was

used for the other polynomials with one change. For this

family of polynomials plotted the order of the polynomlals
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was reduced to ten., Thls reduced to three the number of
points at which the polynomial approaches the limlting

function, The polynomials plotted are;

Pa(x) = 10x10 . 2.727x8 - 17.32x6 + 11.31x4
- 0.0674x° + 0.1326

10 8 6 4

Pb(X) = 20x - 26.27x° + 0.9353x  + 6.286x
+ 0.24963{2 + 0.1299

P(x) = 30x20 - 50.34x® + 20.19x6 + 0.7260x"

+ 0.6335%° + 0.1266

The value of the arbitrary parameter was reduced to
obtain convergence, and allowed to vary to produce a family
of polynomials.

The polynomial

18

100x°° - 5800x°

i

P(x) - 2305x1% + 35801x*°
+ 12319x8 - 285u8x%0 - 2804x0 + 297x*

9.366x2 + 0,1974

was developed using the same program as the other polynomials
of this section. The order of this polynomial was raised to
elghteen and the number of pass band approach points to

seven. The band width factor was 0.1 and the ripple factor
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0.33. This polynomial 1s plotted in Figure 17.

The value used as the arbitrary parameter 18 not
within the optimum range, as 1s obvious by noting the errors
at high values of x on the plot. From experience with the
tenth and fourteenth order polynomials, it appears that the
value of the arbltrary parameter should be increased by at
least a power of ten for improved results.

As should be expected, these polynomials were the first
to indicate convergence times which differed significantly
from the other examples. The time and the number of itera-
tions required for convergence is directly related to both
the order of the polynomial and the number of approach
points within the pass band. The reason for the dependency
on the polynomial order is the number of operations required
to solve a system of equations and to factor the polynomials,
The number of operations required by both these calculations

rises exponentially with increasing polynomial order.

4, Approach conditions

Although the approach condition 1s not properly a
variable factor in any one approximation definition, its
definition does affect the shape of the curves and the
preciéion of the approximation. The two approach condition
definitions which must be considered are the tangential
approach and the extremum approasch. The tangential

approach is the one used in all examples of Sections V
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and VI with the exception of the special example of this
sectlon used to 1illustrate the extremum approach.

To i1llustrate the effects of an extremum approach, A
family of fourteenth order polynomial approxlmations to x
is plotted in Figure 18, This is a one parameter family
of polynomials using the constant term as the arbitrary
parameter. To accentuate the effect of the extremum
approach the ripple factor was chosen to be 0.5. Typical of
the polynomials plotted are |

Py(x) = 1453xM*- hu6ox1? + 5129x10 - 2697x8
+ 617.2x° - 41.88x" + 0.3591x2 + 0.15
P (%) = sul . 1x 1% - 1281x12 + 765.1x10 + 215.7x8

344.1x6 + 97.74}(4 - 5.943}(2 + 0.20

The values used for all polynomials of this [lamily are
BW = 0.1 and R = 0.5.

There is l1little noticeable overshootlng of the lower
1imit due to the fact that the polynomial approaches this
1imit with a slope greater than that of the limit curve.
At the upper limit, the slope of the polynomial near the
extremum is less than that of the 1limit curvc end notlice-
able overshooting is present. As the value of x increases,
the polynomial becomes more peaked at the approach polnts.

For this reason the overshooting of the upper limit 1s
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less apparent for large x, and more apparent overshooting
of the lower 1limit occurs at low values of x. It should
be noted that the extremum approach conditlion is satisfied
Since the polynomials are equal to the limiting curves at

the extrema of the polynomial.

5. Limit definitions

There are two methods of defining the limiting functions
to be used in forming an approximating polynomial within the
coefficient method. The first of these requires a central
function, f(x), and establishes limits as positive and
negative deviations from this function. The second method
does not require this central function but defines the
1imiting functions directly. The following examples
illustrate the two methods of 1limit definitions,

The previous examples have all used central functions
which were simple polynomials in x and defined the limlits
about this value, Figures 19 and 20 1llustrate approxi-
mations to central functions which are not rational
functions of x. The function used in Flgure 19 1is
f(x) = xX/2 and that used in Figure 20 is f(x) = x5,

Since these are irrational functions of x the limits
become irrational functions of x and plece-wise linear
techniques were used in the approximation. .

Figures 21, 22, and 23 show plots of polynomials

formed using the second definition of the limiting
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functions, in Figure 21, the limits are defined as sine
wave segments. The limits used for forming the curves in

Figure 22 are;
Hi(x) = "1.05 + 0.1x2
Hy(x) = 0.95 - 0.1x?

One weakness of the coefficient method as it is pro-
grammed 1s illustrated by the polynomials plotted in
Figure 23. In this example there is an abrupt change in
the slope of the limiting curves. In the vicinity of this
change in slope, the curves of the polynomlals fall outside
the limits. Since there 1s no test to detect this condition
in the program, the only means of discovering this type of
error 1s by examination of the curves of the polynomials as
they are developed. In this example it was noted that the
error became more pronounced as the value of the arbitrary
parameter increased, Therefore, one possible correction
is the reduction of the value of thils parameter.

It 1s felt that the detection of errors by the
examination of the curves as they are plotted is a faster
and surer method than is possible by introducing tests
for all possible undesirable conditions into the approxi-
mation program.

The polynomials plotted in Figure 21 are;
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100x36 4 64,14x%2 - 719.3%10 4+ 952.0x8

>
~
H

M

- 490.4x0 + 95.64x" - 1.637x% + 0.25

Pp(x) = 200x™* . 281.22x%2 - 260.10x10 + 660.5x°

- 401.3x0 + 8h.69xF - 1.390x2 + 0.25

P(x) = 300xM* - 625.2x12 + 193.7x10 + 377.1x°

6 b

- 319.0x° + 76.14x ' - 1.415%° + 0.25

The polynomials plotted in Figure 22 are;

P (x) = 100x™ - 193.9x'% + 34.85x10 + w5.2x8
- 112.5x6 + 28.67xu - 2.169x2 + 1.00

p(x) = 200x™ - 537.6x% 4 ok ux®® - 150,760
- 19.308 + 16.08x" - 1.701%° + 1.00

P (x) = 3OOx14 - 892.2x12 + 981.2x10 - 477.6x8

0.0838x" + 89.89x0 - 0.9867x° + 1.00

The polynomials plotted in Figure 23 are;

Pa(x) = 100x1u - 137.9x12 - 156.6xlo + 385.9x8

6 b

- 286,.7x° + 59,60x - 4.409x2 - 1.10
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14

po(x) = 200x* - 493.6x1% + 333.8x1°0 + 58,1248

n

140.7x% + 45.13x" - 3.883x° + 1.10

300x1” - 854.9x12 + 841.8x10 4 288.0x8

U
Q

>
~

it

210.05x° + 28.20x - 3.210x° + 1.10

In each of the examples of this section the lower end
point condition was specified to force the polynomilal

midway between the limiting functions for x equal to zero.

C. General Remarks
From the results of the examples shown in this section,
it may be concluded that the coefficient method does
perform as predicted in its development. The examples
glven are not intended as limitations on the method, but
were chosen as typical practical problems, Based on
experience gained from the examples solved, several remarks

can be made about the possible use of this method.

1. Physical realizability

One of the prime requirements of the polynomials
developed using the coefficient method is that they result
in functions which are physically realizable as electric
networks. Use of the Method of Gewertz should ensure the
physical realizabillty of functions which use the poly-

nomials in the denominator of the appropriate network
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function. To demonstrate this, each of the polynomials
developed in this sectlion was used as the denominator of
an approximate network function and synthesized as a
lossless ladder network terminated in a one chm resistor.
Each function resulted in a physically realizable network
wlth the exception of the one using the third polynomial,
P,(x), plotted in Figure 22, The functlon of s formed
from this polynomial had only five poles with negative

real parts Iinstead of the necessary seven. This was caused
by inaccuracies in the factoring routing due to the small

coefficlent of the xu term of this polynomial.

2, Arbitrary parameter values

In several of the examples it was noted that the
precision of the approximation was due, in part, to the
value chosen for the arbitrary parameter. Experience has
shown that the choice of this value affects the sensitivity
of the polynomial both to changes in approach points and
therefore to the number of iterations required to reach
a solution. Even though the process may reach a solution
for some randomly chosen value of the arbitrary parameter,
there is some optimum range of this value. Within this
range, the polynomial is more rapidly formed and 1s less
sensitive to changes in its properties,

The networks formed using the polynomlals are also

affected by the cholce of the arbitrary parameter value.
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If the value used 18 within this range of best values, tﬁe
network component values are more uniform. There may be

a ten to one range in component values. If a value of

the arbitrary parameter outside this preferred range is
chosen, the ratio of component values may be as high as
forty to one. Therefore, in the case of transducer design,
it 1s often necessary to be sure the afbitrary parameter

value 1s within the preferred range for satisfactory

designs.

3. Practical applications

The practical applications of the coefficlent method
are due to its abillty to form a family of networks with
similar frequency responses and to form polynomlial approxl-
mations to a wide variety of functions. Section VI 1llus-
trates several applications of this method to problems in

network synthesis,
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VI, APPLICATION TO NETWORK SYNTHESIS PROBLEMS

There are several areas within the field of network
synthesis in which the versatillity of the coefficient and
extremum methods makes 1t possible to solve problems for
which standard approximation techniques are not satisfactory.
These are those problems which require constralnts other
than frequency response characteristics and those which
require functions other than simple rational functions to
be approximated.

In this section several examples of practical problems
which require specifications other than standard frequency
response specifications are illustrated. The examples
include the use of the coefficlent method to control the
cut-off characteristic of a network by controlling the slope
of the approximating polynomial at the upper end of the
pass band. A second example iliustraves the possibilltiy
of using the coefficlent method to allow the synthesis of
an all-pole or lossless ladder network to approximate the
- response of a lattice network which has a zero in the right
half of the complex frequency plane. Other applications
are discussed but not illustrated by specific examples.

These examples are not intended to include all possible
applications of the methods of this thesis, but are typical

of the type of problem which may be solved by thelr
application.
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A. Control of Response Characteristics

One type of constraint which cannot be included within
the usual methods of network approximation 1s a definite
specification on one particular characteristic independent
of the other response characteristics. For example, when
utilizing Chebyshev Polynomials, once the order of the
polynomial to be used has been specified, the cut-off
characterlistic has also been determined. In certain types
of filters it may be desirable to control directly the
glope of the cut-off at high frequencies independent of
the pelynomlal order,

The slope of the cut-off character of the filter response
is determined by the slope of the approximating polynomial
as 1t passes through the upper end of the pass band., Using
the coefficlent method, this slope may be controlled by the
variation of a combination of parameters. Among those
parameters which may be used to control this slope are the
coefficient of the highest power term of the polynomial
and the polynomial zero nearest the end of the pass band.
It is also possible to use the slope of the polynomial
1tself as the controlling parameter.

The two polynomials given below were formed using the
coefficient method to form an equi-ripple approximation
to a constant over the range zero to one with the

12

coefficient of x and the zero nearest one as the
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51423{12 - 1934x10 4 2657x8 - 1727x6 + 514x4 - 56.4x2 + 1.03
806x1° - 2723x10 + 3536x8 - 2145x6 + 599x4 - 62.3x2 + 1.02

arbitrary parameters used to vary the slope at unity. The
first polynomial has a slope at unity equal to 31.2 and

the second a slope of 138.8. By proper selection of the
parameter values a variety of polynomiazls was formed having
slopes lying between these two limits. For comparison
purposes the twelfth order Chebyshev Polynomial has a slope
of 144 at unity.

Other response characteristics may be controlled by
proper definition of the arbitrary parameters. The curves
of Figure 13 illustrate the control of network d.c. behavior
possible using the band width factor as the controlling
variable., Figure 18 illustrates d.c. behavior controlled
by variation of the constant term of the polynomlal when
used as an arbitrary parameter. Combinations of these and
other parameters may be used to control other response

characteristics.,

B. Replacement Networks
It is possible to use the coefficient method to form
simple lossless ladder networks which are approximations to
more complex networks over a specified frequency range.
In some cases this simple network may be used as a replace-

ment for the original network. There are several possible
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advantages to be galned by thls replacement. In general
the ladder will have fewer elements than the original
network and will contain only passive elements, whereas
the original may contaln several active elements., Using
a ladder to replace a network such as a lattice permits
the use of a common ground connection between input and
output.

This replacement network may be developed using the
coefficient method to approximate a function which is the
inverse of the original transfer function. If the origilnal
function T(s) is represented as N(s)/D(s) the replacement
network will have a transfer functlion Ty which may be
represented as 1/P(s). 1In this form P(s) 1is a polynomial
approximation to D(s)/N(s) over a specifled range of s.

The range of approximation must be limited to exclude

zeros of the original

(X1

The data necessary for forming the polynomial approxi-
mation may be obtained in one of two ways. The first of
these involves using the laboratory or analysis data of
the frequency response of the original network. These
data must then be squared and inverted to be in the proper
form for the approximation technique. The alternate
procedure involves the use of the transfer function of
the original network. In this process T(s) is multiplied

by T(-s) and the product evaluated over the range of s
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needed for the approximation,
Figure 24a 18 the schematic diagram of a lattice network

which has the transfer function glven below. The coefficient

E, 5 (s2 + 25 - 8)

E; s2 + U4s + 5

method was used to develop a polynomial approximation over
the range of frequency from 0.1 to 1.0 and from that poly-
nomial the ladder networks having the form of Figure 24b
were formed. Figure 25 shows the frequency responses of
the three networks. The solid line of Figure 25 is the
response of the lattice network as determined using digital
computer analysis. The circles represent the response data
of the network formed using the computer determined
response data to develop the approximation polynomial,

The crosses represent the response date of a ladder formed
using the transfer function of the lattice in the approxi-
mation process, The ladder component values for the two
cases are given in Table 5. The component values given in
this table and those for the lattice network have been
scaled for the frequency range 2ero to one and a one ohm

load resistor.

C. Characteristic Matching
Many transducers and other signal sources have

frequency-response characteristics which are dependent
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Table 5. Ladder component values

Response~ Function-~
Component derived ladder derived ladder

Ly 920.0 213.0
Cq 0.0056 0.021
Ln 46.0 22.7
Co 0.108 0.184
L3 4,85 4,01
C3 0.344 0.539
Ly 3.46 1.50
Cy 0.642 0.717
Lg 1.42 1.03
Cq 0.680 0.405

upon the nature of the device and may not be changed. The
system in whilch these devices are used may require other
overall frequency characteristics. To accomplish this a
filter network must be designed to match the actual

device characteristic to the desired response of the system.
Therefore the filter network must have a response char-
acteristic which is some complnation of these two char-
acteristlics. This combination may be a complex function

of frequency which 1s not easlly expressed in rational

form. Usinp the coefficlent method this combined response

function mey be approximated by a polynomial even 1f the
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function 1s not a rational form.

One example of the practical application of the co-
efficient method to the problem of response characteristic
matching 1s the design of an acoustlc transducer similar
to that described in Section III., 1In this case it was
necessary that the overall system response be an equl-
ripple approximation to a constant even though the device
response was a three decibel per octave loss with increasing
frequency. This required that the transducer have a
responseé which lncreased three decibels per octave with
increasing frequency. The final response function selected
involved a frequency to the fourth power term as the
numerator and a polyncrmial approximation to frequency to
the fifth power as the denominator. The coefficient method
was used to form an equi-ripple fourteenth order polynomial
approximation to x2 over the range of x from 0.1 to 1.0 to
be used as the demoninator. This transducer is still in

the design stage.

D. Inter-component Constraints
One of the motivating purposes in the development of
the approximation methods of this thesis was to permit
inter-component constraints to be considered in problems
of network syntheslis. Thils application of the methods 1s
fully illustrated by the design outlined in Section III.

This particular design uses the extremum method, but the
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coefficient method could be used alone.

E. Addltional Applicatlons

The examples of practical applications of the approxi-
mation methods of this thesis described above are typical of
those applications which take advantage of the unique
properties of these methods. These methods also may be
used in any of the filter design problems which are now
solved using conventlonal techniques.

Although the methods of approximation developed were
specifically designed for use in network synthesis projects,
they are general in nature and should be applicable to any
problem requiring polynomials which approximate a given

funetion.
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VII, SUMMARY AND CONCLUSIONS

Two methods of forming m-parameter families of approxi-
mating polynomials have been developed and illustrated in
this thesis. The first of these, the extremum method, 1is
a special purpose method for forming families of poly-
nomials which approximete a constant in an equi-ripple
sense over a finite interval. The second method, the
coefficient method, 1s applicable to a wide range of
approximation problems. One version of this method forms
polynomial approximations to explicit mathematical functions
within some variable 1limits over a prescribed interval.
Another version develops polynomials which fit within a

pair of arbitrary limiting functions.

A. Basic Algorithm

Although fhe methods developed in this thesis are dif-
ferent, they do have several basic steps in common, It
is possible to derive a general algorlithm from these common
steps which may be applied to other approximation tech-
niques, The basic steps needed in all methods of this
nature are the formation and solution of a system of
equations in a set of polynomial characteristics, the
application of a second set of conditions to be satisfied
by the polynomlal, the formation and Eesting of a trial

polynomial and the determination of an improved set of
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.estimates for use in the next cycle of the process,

1. Equation system

The first step in the algorithm requires the formation
and solution of a set of equations, The unknowns in this
system of edquations are a set of basic polynomial char-
acteristics, The extremum method used the extrema of the
polynomial as the unknowns. The polynomial characteristics
used in the coefficient method were its coefficients.
Another possibility would be a system of equations using
the zeros of the polynomial as the unknowns. The equation
defining the end conditions and the arbitrary parameters
of the polynomial family are included within thls system
of equations,

The coefficients of this system of equations are derived
from a set of initlal estimates. In the extremum method
this set was estimates of the extremsa themselves. In the
coefficient method, a set of approach point estimates was
used to determine the coefficients of the system of
equations, There are many such sets which could be used,
but for best results the set chosen should have some
significance in subsequent calculations.

A trial polynomial is formed from the results of the
golution of this set of equations. This polynomial will be

used in the following steps of the algorithm.
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2. Additional conditions

Once a trial polynomial has been formed, it must be
tested to determine if 1t satisfies a set of constraints,
In general, these constraints, which are in addition to
the constraints of the system of equations specified in
the first step, are related to the 1limits within which the
polynomial must lie.

The additional constraint imposed by the extremum method
was that the magnitude of the polynomial at the extremum
must equal the ripple magnitude. The coefficlent method
required the tangents of the polynomial and the limiting
function to be equal at the points for which the values of

the two functions are equal,

3. Test for solution

In any iterative process there must be some method of
testing the trial solutlion. Once this test 1is satistfled
the trial solution is defined as a final solution. If the
trial polynomial does not satisiy the conditions of the
test, the iterative process must continue. 1In thise
algorithm, these tests usually will be performed on the
trial polynomial.

The test used in the extremum method compared the
actual values of the trial polynomiel at its extrema with
the values of the limiting functions at these points. The

value used as a measure of the error involved was the sum
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of the squares of the differences in these values, 1In

the coefficlent method, the test involved finding those
points for which the tangent of the polynomial equalled
the tangents of the limiting functions. These points were
compared with the predicted points and the sum of the
squares of thelr differences was used as a measure of
convergence,

In each of the methods of this thesls, the points used
for this test were related to the points used as initial
estimates in the first step. Although this relatilonship 1s
not a necessity, it 1s a commonly used practice and permits

a new set of estimates to be evaluated easlly.

4, Estimate update

Whenever the test of the trial polynomial indicated that
no solution has been reached a new set of estimates must'be
supplied and the cycle repeated. There are many possibile
means of developing a new set of estimates, The f
c¢hoice of the method used will depend tc a large extent on
the definition of the estimates themselves and on the
details of the computations in the earlier steps of the
algorithm,

In the extremum method, the extrema are used as esti-
mates even though they are never computed within the

algorithm. Therefore, a system of nonlinear equatlons

must be solved to update these estimates, It is this
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process which causes much of the difflculty in obtalning
solutions by the extremum method.

The points of approach are used as estimates in each
cycle 1n the coefficient method, The test procedure lnvolves
the estimated points of approach and the actual points of
equal tangents. Having this set of equal tangent points
avallable, the improved estimates may be derived by linear
interpolation using thls set and the previous estimates,

The two methods of updating the estimates mentioned
above 1llustrate the range of methods which can be used.

In any particular program the updating method must be
determined by the details of the program itself,

The four steps described above are not intended as a
complete description of an algorithm to produce polynomials
which approximate some function. The purpose of the
description is to illustrate the similarity of the two
methods developed in this thesis and to show that variations
on the methods of this thesis can be developed. The basic
steps of such algorithms will be those described here,

although the details may be quite different.

B. Limitations on the Methods
Except in the case of the extremum method which was
designed as a special purpose method to solve one problem,
there appear to be no theoretical limitations on the

application of the methods of this thesis. Experience
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has indicated the major source of difficulty to be the
design of the computer programs needed to accomplish the
computations, With appropriate safeguards built into these
programs, there 1s no reason to limit the use of the methods.
However, thils safeguard method soon becomes impractlcal. It
appears much more efficlent to detect such errors by
examinatlion of the polynomial plots. In this way a wide
variety of errors mayfpe detected and corrected better than
by an array of limited testing routines.

One major solution to possible troubles appears to be
the correct selection of the value for the arbitrary param-
eter. In all examples tested, the methods have performed
satisfactorily once a proper choice of this value has been
made. These choices are dictated by the behavior of the
polynomial itself and may be determined by evaluation of

the curves as the polynomials are plotted.

C. Future Investigations
There are several areas which may prove of interest for
future investigation. One of the most promising of these
is the development of a noniterative method of accomplishing
the approximation process. Another promising area is the
application of the methods of thils thesils to problems of

network optimization,
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1. Explicit method

Several attempts were made to derive an explicit expres-
sion for the approximatlon. In each case the computations
involved were too complicated to permit direct solution.
When the assumptions necessary to permit solution were
included, the results were too restrictive to be of general
use., Because of the need to produce a network meeting
certain specifications (Section III), these attempts were
not pursued in more detail, but were abandoned in favor of
the numerlicsi methods of this thesis.

The attempts made (Appendix, Sections A, B) could serve as
starting points for any future attempts to derive‘an
explicit approximation expression. This explicit form
should include the desirable features of the 1lterative
forms of this thesis and, in addition, could have the
advantage of reduced computation time which is character-

istic of many expliclt expressions,

2. Network optimization

The optimization technique described by Ishizaki and
Watanabe (9) suggests that the approximation procedures
of this thesis can be adapted for use 1n a similar tech-
nigque. The ma jor differences between the optimization
procedure and the approximation procedure are the form of
the final solution and application of the output.

The optimization method referenced above is not as
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general as a method based on the techniques of this thesis
could be, The present method 1s limlted to Chebyshev
sense optimization. A method based on this thesis could

be used for a wide variety of optimization schemes.

3. Other possible areas

The two suggestions for possible future investigation
glven above are not the only aress avallable, They are
suggested because they represent extensions of the methods
derived. Other posslble areas of investigation could
produce improvements within the [lramework of the present
methods.

Desirable improvements include reprogramming for
improved precision or reduced computation time, Other
possible improvements are additional polynomial testing
and speclal purpose polynomial factoring subroutine design.

Other fruitful areas for addltional investigatlon may
be found in the field of applications. At present, the

method has been applied only to the network design problems,

but other applications of equal interest may be found.

D. Concluding Remarks

The two methods of forming polynomial families which
approximate some desired function or curve were developed
to allow more variety in the networks designed to meet a

desired frequency response, With a family of networks
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from which to choose, the choice of a final network may be
based upon considerations other than frequency response.

In design projects where constraints other than frequency
respons3e characteristles were lmportant, the application of
the methods of this thesis have produced physically
realizable devices meeting all constralnts; whereas, the
existing approximation techniques did not.

Another degree of flexibllity allowed when applylng the
methods developed In this thesis 1s the ability to approxi-
mate a wider varlety of response functions. Using the
coefficient method, the choice of functions to be approxi-
matedis not limited to simple rational forms, but any
finite, single-valued function or curve may be approximated
in a form sultable for use in network synthesis problems,

Thus, the methods of this thesis widen the scope of

ietwork synthesis metheds by permitting the formation of
a variety of networks meeting the same specifications and
by providing a wider variety of functions which may be

used in response speclfications.
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IX. APPENDIX

A, Analytic Method
This appendix outlines one unsuccessful attempt to
produce an explicit form for the approximatilion polynomials
described in the body of this thesis. Solution of the
resultant equations in this development required restric-
tions which so limited the choice of parameter values as to
make the solutlion impractical.
The analytic method of developing the extremum method
1s based on the following hypotheses:
Polynomial, P,(x), is even.
M = max|p (x)| for finite x.
Interval of approximation = [-1,1].
M= [P | at n-1 points in the interval and nowhere else
along the imaginary axis.
No finite extrema of P
approximation,
From these hypotheses the following root (or zero) locations
may be deduced.
Roots of (M - Py) =0
end points 2 simple real rocts
1/2(n-4) double real zeros
2 simple complex conjugate 2zeros
Roots of (M + P ) =0
1/2(n-2) double real roots

2 simple complex conjugate roots

2
The conjugate simple roots will appear as factors (xqo + x2)
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in ', (M - P ), and (M + P,). Other factors of these

terms include:
P_!' includes (x N x2)
n 1

2
(M - P,) includes (1 - x2) and (xp + x°)

(M + Py) includes (x52 + x)

Since the zeros of Pn' occur at the extrema and the complex
roots, the zeros of (Pn')z/(xl2 + x2)2 are real. Also since

(1 - xe)(Pn')2 contains the same factors as (M2 - Pne),
factoring (Pn')z/(xl2 + x2)2 shows it to have the same
factors as (M - 2)(M + 2p)/(1 - xB)(xp" + x%)(x5° +x°),
and all zeros occur at the extrema of Pj.

If P,(x) is denoted by y, the following equations can

2

be written. The factor, n“, is lncluded to keep the co-

efficient of the highest power of X equal to one.

2 2
, n?(M - y2)(x," + x?)
{(Pn')" = =L~ = ~
dx

(1 - %) (xp° + @) (%32 + x°)

2 2
ay  _ 2 .2 M-y 1/
ax = n(x" +x )[(l i x2)(x22 N XQ)(X32 N Xz)]
dy n(xl2 + x2)dx
- = 22
(m° - y2)i/2 [(1 - x°)(xp° + xe)(x32 + x2)11/2 (ce)

Integrating the left-hand side of Equation 22 gilves
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dy ¥
r = - arc cos (£) (23)
. 2

(W - y°)1/2 .
Defining £, as shown in Equation 24, substituting 1

into Equation 23 and rearranging terms glves Equation 25.

2

. r -(x1° + %% )ax

n T [(1 - x2)(x22 + x2)(x32 + x2)]1/2

(24)

y = M cos(nfy) (25)

If z 1s defined as (x12 + x2), X becomes (z - x12)1/?
and dx becomes dz/2(z - xlz)l/é. Defining u, By, Bp, and
B3 as shown below and substituting them into the equation
for f, gives Equation 26, The denominator of Equation 26

is multiplied through, thus producing the polynomial in u
of Equation 27.

~”
<

U =
1 +X12
v. 2
<]
Bl = 2
1 + X1
v 2 _ 4 2
l\-l —4\2
By = 5
1 + X3
2 2
X - X
B3 ‘= 1 3
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1
fn = -

f a ()

7 (26
[-(1 - u)(By - w)(By - u)(B3 - u)]+/2 (26)

(1 - u)(By - u)(B2 - u)(Bg - u) = ByBgB3
- u(ByBpB3 + ByBp + ByBg + BgBy

+ uP(By + By + By + BBy + BoBy + BgBy)

- w31+ By + By + 33) + u“ (27)

One method of handling the integration involved in this
definition of £, 1s to form an elementary integral. To put
Equation 26 into such a form, the coefficients of u and u3
in Equation 27 must be set equal to zero,

By +By +By = -1

Since this is a set of two equations in three unknowns, no
unique solution can be found. One possible trial solution
uses large values of Xq which makes By = O, Bp = -1, and

B3 = =-1. With these values of the B's substituted into

Cu
m

Equation 26, the reduced expression
h

shown in Equation 28 which has the indeterminant solution
given. Therefore, this assumed solution must be considered

invalid.
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| r d(ue)
n B d-(r - 202 + uu)]l/é (28)

2
are cos [gﬁljgii_l]

= 3
n
As another possible solutlon, the coefficients for u

and u3 are rearranged in the form shown below and set equal

to zero.
Bi(Bo + B3) + 5253(31 +1) = 0
(B) +1) + (By + B3) = 0

Thus

By +B3 = -(B; +1)

and

-B1(By +1) + B2B3(B1 +1) = O
[ hee AAFX Nt &4 AN r - 2/(-' A 2\ T L T
D LIS y W, Geiafiavaln, oy = --1 AR + Xl ) WNLCI1 10 adiwayw

Once agein, there are more unknowns than equatlions so

an assumed sciution of either By = -land By = - By or

Bp = - By and B3 = -1 1is substituted into Equation 26

and the equation solved.
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£ o= - %. r d(u?)
D-(u¥ o+ (-1 - B2 4 BR) 112

Blz +
arc sin [ ] +¢n

B2 -1

=
1

N

=

=

—
1
N
=
N

2
Bi© +

arc cos |

1
ES

B1® - 1

Substituting this solution into the equation for y,
produces the transcendental equation, Equation 29, This
equation may be transformed into a polynomial by application
of the trigonometric identity, cos(n(arc cos X)) =
12 [(x +(x2 - 1)1/2)" 4 (x - (22 - 1)V2)"]. The poly-
nomial thus produced is a polynomial 1n u2 having B, as a

parameter, This polynomial is shown as Equation 30,

B% + 1 - 242
y = Mcos[- arc cos( 5 )] (29)
B2 - 1
2 2 1. 2(p.2 2y1/2
M B1© + 1 - 2u° +2(ut - u“(By + 1)+ B1°)
y = 31 - L 1/
By - 1
2 2 4 _ 2rp.2 2y14
M BT +1-2u° - 2(u - w7 (B + 1)+ By°) n/
+ 5 ( A

2
B -1
(30)
When the original definitions for u and B; are sub-

stituted into this polynomial, Equation 31 1is the resuit.



130

For y to be an even polynomlal, the coefflclents for the

M op oy ul/20/ 7 - ul/2
y = o [~——] " [————] /4 (31)
1+ B 1+ B;

where

T = 2(1 - By)x* +4Bx® - (1 +3B)

U o= B(1 - By)2x8 + 168,(1 - B)xS + 4(5B° - 1)x'

2

x2 and x6 terms in U must be equal to zero. There are three

possible combinations which make the coefficient of x2 equal
to zero:

1. M =0 (not allowed),

2. By =0 (possible),

3. 1+ By == (trivial solution).

Therefore to satlsfy the hypothesis that P, be &n even
polynomial, only one value of B1 is possible. This
violates the hypothesis requiring a variable parameter.
Other similar assumptions were also tried but with 1llke
results. Each assumption forced a single cholce of the
arbitrary parameter. Other methods of approach may exist,

but were not investigated thoroughly.
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B. Second Order Equation Method

A second unsuccessful attempt to find an explicit method
of forming the type of approximation described in the thesis
1s described in this appendix. This method was abandoned
because necessary approximations severely restricted the
form of the final solution,

This method makes use of the same hypotheses as the method
of Appendix, Section A, and is identical to it up to and
including Equation 24. In the method of this appendix, a
second order differential equation in y is formed. Once
formed an attempt is made to solve the equation for y.

The second order differential equation is formed as
shown below. Equations 24 and 25 are repeated for reference.
In order to simplify writing the equations, a new funétion,

g, 1is defined by Equation

y = Mcosn I,
p - (x12 + x2) ax
£, =
n J [-(1 - x2)(xp2 + x2)(x32 + x2)]17é
- (312 + x2)
g = R 2 (32)
(-1 - 2B (xg? + ) (x5 + L) IV2
Yy = Mcos [n F gax ]

v

y' = ngMsin [n 'r gax ]
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Ei = nM sin [n 'r gdx ]
[Xiq' = - nMg cos [n _r gdx]
g D
tep !
y" - XEE_ + n282Y = 0 (33)

The second order differentlal equation for y in terms
of g (Equation 33) must now be solved. When the appropriate
operations are performed on the function, g, Equation 33
has the form specified in Equation 34 in which the co-

efficients are polynomials in x as defined below,

Ay" + By' + Cy = O (34)
A = (1 - X2)(x12 + xz)(xz + X )(X32 + Xp5)

_ Al eyvy. 2 L2y 2 ..2\

=B = X|<(1 - X )\2&2 + X )\AB + X )

- (1 - x2)(x12 + xe)(x32 + X

This equation is now in the appropriate form to be

solved using the Method of Frobenius (6). For this method
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the equation must be in the form specifled by Equation 35.

2
d 1 d
My = R(x) a% + 5 P(x) g}i +-}};Q(X)y =0 (35)
where
_ 2 3 4
R(x) = A = Ry + RjX + RpX® + RaX™ + Ryx + ..,
RO = 1
R, = 0
R2 = 1 + 12 + L -1
XB2 X2 X12
R3 = 0
R, = 21+1+1_1_1_1
Xp x32 Xq x32 x12x22 X3 x22 x32
R5 = 0
Rg = 1 _ 1 1 1
X1 }:22x32 x22x32 Xq x32 x12x22
R8 = - 1

2, 2, 2
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P(x) = XB = Py + Pix + P.zx2 + P3x3 + 1>4x4 + e
PO = 0
Pl = 0
Py = -2 + 1 + L. 1
X2 x3 xp2
P3 = 0
p -2 2 + 2 + 1 2 2
4y = 5 2 "o o T L2
xl"x2 x12x32 )&2 1&32 A12 X5 A32
P5 = O
2
P6 = -
2, 2
X2 X3
P7 = O
-1
Pg =
2. 2
X7%y x3
2 2 . 3 b
Q(x) = x°c = Qg + QX + Q%" + QX +Qx" +
QO = 0
Ql = 0
2, U
nxy
Q2 = 5
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2. 2
3n Xq

Qs = 0

3n°

Q, = O

—r
x,2x,%%52

After zpplying the Method of Frobenius (6), the solution
for y has the form of Equation 36. When the appropriate
substitutions are made the equation becomes that shown as

Equation 37.

y = Xs » Ak.xk (36)
k=0

8-2 1

My = (1 +Ryx +Rox + ...)(x(x - 1)Ax"™" + (s + 1)sAx%"

+ {5 +2) BoxB + ..) + (P + Pox o+ Ppx? 4+ LLL)

o -7
(sons"2 + (s + l)Ale‘l + (s +2)ax® + ...)

+ (Qp + Qx + an2 + ...)(ons"2 + Alxs’l + A2xs + ees)

(37)
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Since y must be an even function of x, 8 cannot be equal to
one, If s is set equal to zero, the odd subscripted A
terms must be zero., This is already the case without need
for the selectlion of xp or Xxj.

In order to obtain a recursion formula for the A's in
the above equation, Equation 36 1is substituted into
Equation 34 resulting in Equation 38.

2
d 2k
Ax) =5 (2 M)+ B(x) g (2 43%%) 4 0(x) = 4K = 0
X
4 (38)
a _ 2k-1
ax = T eKAX
a°y 2k-2
2 = 7 2k(2k - 1)Apx

For the n®P order polynomial specified by the hypothesis,

the recurslion formulae become those shown below., There-
fore, for k to be (1/2n + 3), must be zero, since

A n/2 cannot be zero due to the even polynomial hypothesis.
Thus, for the value of k = (1/2n + 3), the value for ry

is given below. This value becomes zero forn = - 6 or

- 2, neither of which satisfies the hypothesis,
Anfogr = Tofnse +Tihpsony t TR oo + TRy = 0
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An/2+3 = I‘2An/2 + I'3An/2_l = 0

Anjers = T3t

h(2k - 3)2 - n°

x12x22x32(4k2 + 6k + 2)

I‘3=

An alternate possibility is to force the denominator
term to approach infinlty which may be done by eilther
letting n become infinite, which 1is impractical, or letting
one or more of the x's become infinite, If the latter
choice is made, r3 = 0 for any n or k. Therefore, this
method does not produce a polynomial satlisfying the

necessary specifications,
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